融合深度学习的焊缝特征点识别与定位
DOI:
CSTR:
作者:
作者单位:

1.兰州交通大学机电工程学院;2.甘肃建投装备制造有限公司

作者简介:

通讯作者:

中图分类号:

TG409, TP242.2

基金项目:

甘肃省青年科技(24 JRRA983).


Weld Seam Feature Point Recognition and Localization with Deep Learning Integration
Author:
Affiliation:

1.College of Mechanical and Electrical Engineering, Lanzhou Jiaotong University;2.Gansu Jiantou Equipment Manufacturing Co., Ltd

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对实际焊接环境中弧光噪声造成焊缝激光条纹分割精度低的问题,提出了一种基于“深度学习+数字图像处理”的焊缝特征点识别与定位方法。首先,设计并开发了一套适用于实际焊接场景下的图像采集系统;其次,基于深度学习训练出目标检测模型,获取焊缝感兴趣区域(region of interest,ROI),实现了激光条纹区域实时粗定位;然后利用数字图像处理方法对焊缝感兴趣区域进行图像处理,求得焊缝特征点的像素坐标,最后再利用三维重建算法求得焊缝特征点的世界坐标并进行试验。结果表明,单幅图像的特征点定位误差在±1mm以内,平均处理时间小于0.5s,即使在具有弧光、烟雾噪声等干扰的复杂焊接环境下,该方法仍能快速、准确地检测到焊缝特征点。

    Abstract:

    Aiming at the problem of low segmentation accuracy of weld laser stripes caused by a large amount of arc light noise in the actual welding environment, A method for weld seam feature point recognition and localization integrating deep learning with digital image processing algorithms is proposed. Firstly, an image acquisition system designed for actual welding environments is developed. Secondly, a deep learning-based object detection model was trained to identify the weld seam region of interest (ROI), enabling real-time coarse localization of the laser stripe region. Thirdly, improved digital image processing algorithms is applied to the weld seam region of interest (ROI) to extract the pixel coordinates of feature point. Finally, the world coordinates of weld seam feature point is reconstructed using Three-dimensional reconstruction algorithm and the superiority and applicability of the algorithm is experimentally validated. Experimental results demonstrate that the feature point localization error for a single image remains within ±1 mm, with a mean processing time less than 0.5s. Even under complex welding environments containing interference such as arc glare and smoke noise, the proposed method maintains rapid and accurate detection of weld seam feature point.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-03
  • 最后修改日期:2025-07-19
  • 录用日期:2025-08-13
  • 在线发布日期:
  • 出版日期:
文章二维码