基于YOLOv5特征检测的自动化抹面机器人系统设计
DOI:
CSTR:
作者:
作者单位:

中铁十四局集团房桥有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2018AA0103004)、天津市科技计划重大专项(20YFZCGX00550)和中铁十四局集团有限公司A类课题(913700001630559891202305)资助项目


Design of Binocular Vision Plastering Robot System Based on YOLOv5 Feature Detection
Author:
Affiliation:

China Railway 14th Bureau Group Fangqiao Co., Ltd

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对盾构管片生产中耗时长、效率低、人力成本高等问题,设计了一套自动化抹面机器人硬件系统。为了应对初次抹面后预制混凝土的质量检测需求,研发了一套基于YOLOv5特征检测算法的人机交互软件系统。通过将自动化抹面机器人搭载特征检测人机交互界面,实现了盾构管片的自动化生产过程。实际应用结果表明,YOLOv5特征检测算法对初次抹面后混凝土表面特征的缺陷检测准确度较高,且机器人具有较高的定位精度。该系统能够充分满足现实生产需求,提高了生产效率。

    Abstract:

    In addressing the challenges posed by the protracted nature of the process, its suboptimal efficiency, and the substantial labor costs incurred in the fabrication of shield segments, a novel automated plastering robot hardware system has been conceptualized. In order to ensure the fulfilment of the quality inspection requirements for precast concrete following the initial plastering, a human-computer interaction software system has been developed. This system is founded on the YOLOv5 feature detection algorithm. The integration of the automatic plastering robot with the feature detection human-computer interface enables the automation of the shield segment production process. Empirical evidence demonstrates the efficacy of the YOLOv5 feature detection algorithm in accurately detecting defects in concrete surface features post initial plastering, while the robot exhibits high positioning precision. The system"s comprehensive alignment with practical production demands ensures enhanced efficiency.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-14
  • 最后修改日期:2025-03-25
  • 录用日期:2025-03-27
  • 在线发布日期:
  • 出版日期:
文章二维码