基于两级简化卡尔曼滤波器的高速偏振态旋转均衡算法
DOI:
CSTR:
作者:
作者单位:

1.重庆城市科技学院电气工程与智能制造学院;2.武汉光电国家研究中心;3.重庆大学光电技术与系统教育部重点实验室;4.中国南方电网电力调度控制中心通信处

作者简介:

通讯作者:

中图分类号:

TN929.11

基金项目:

中国南方电网科技项目(雷电导致电力OPGW承载的单波100G及以上OTN闪断机理及解决方案研究,CG0000022001594227),重庆市教委科学技术研究项目(KJZD-K201902501)


High speed polarization state rotation equalization algorithm based on two-stage simplified Kalman filter
Author:
Affiliation:

1.College of Electrical Engineering and Intelligent Manufacturing;2.Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology;3.Key Laboratory of Optoelectronic Technology &4.Systems, Ministry of Education, Chongqing University;5.Communication Department of China Southern Power Grid Power Dispatching Control Center

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决光纤链路中快速偏振态旋转导致的误码,本文通过分析在偏振解复用的场景下卡尔曼滤波器中矩阵系数的特殊表达,提供了扩展卡尔曼滤波器的简化思路,将其更新过程转变为一种类多进多出结构算法。在28 Gbaud偏振复用-正交相移键控的相干系统中检验了所提出的算法性能。结果表明,算法复杂度比恒模算法减少超过30%,在光信噪比为15 dB时,拥有处理超过60 Mrad/s偏振旋转速度的均衡能力;相比经典扩展卡尔曼滤波器要多3 dB左右的光信噪比富裕度。

    Abstract:

    To solve the Bit errors caused by rapid polarization rotation in fiber optic links, this paper analyzes the specific representation of matrix coefficients in Kalman filters for polarization demultiplexing scenarios and proposes an extended simplified Kalman filter design. The proposed approach transforms the update process into a multi-input multi-output structured algorithm. The performance of this algorithm was validated in a coherent 28 GBaud polarization-multiplexed quadrature phase-shift keying system. The results show that the algorithm complexity is reduced by more than 30% compared to the constant modulus algorithm, and it has the ability to balance polarization rotation speeds exceeding 60 Mrad/s at an optical signal-to-noise ratio of 15 dB; Compared to the classical extended Kalman filter, it has an additional optical signal-to-noise ratio margin of about 3 dB.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-06
  • 最后修改日期:2025-02-28
  • 录用日期:2025-03-03
  • 在线发布日期:
  • 出版日期:
文章二维码