基于梯度优化的类激活映射及其显著性图的生成研究
DOI:
CSTR:
作者:
作者单位:

河北工业大学

作者简介:

通讯作者:

中图分类号:

TP181

基金项目:

国家自然科学基金专项项目,河北省青少年发展研究课题资助项目


Research on the Generation of Class Activation Maps and Saliency Maps Based on Gradient Optimization
Author:
Affiliation:

Hebei University of Technology

Fund Project:

Special Project of the National Natural Science Foundation of China, Supported by the Hebei Province Youth Development Research Project

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    类激活映射(class activation mapping, CAM)通过生成显著性图来解释深度学习模型的决策过程。然而,现有CAM方法在生成显著性图时,难以兼顾精确度与鲁棒性。本文提出了一种基于多阶梯度优化的CAM方法——multi-step gradient class activation mapping (MG-CAM),通过引入多阶梯度优化策略,融合多维特征信息,动态调整特征图的权重分布,以提升显著性图的精确表达能力与可靠性。在ImageNet数据集上设计了实验,结果表明,MG-CAM在多个评价指标上均有良好表现。此外,MG-CAM通过了健全性检查和消融实验,验证了其对模型参数的敏感性和多阶梯度优化策略的有效性,为提高深度学习模型的可解释性提供了一种研究思路。

    Abstract:

    Class activation mapping (CAM) interprets the decision-making process of deep learning models by generating saliency maps. However, existing CAM methods often encounter difficulties in simultaneously achieving both high precision and robustness. A multi-step gradient class activation mapping (MG-CAM) method is presented, which is built upon a multi-step gradient optimization framework. The approach enhances the precision and reliability of saliency map representation by introducing a multi-step gradient optimization strategy, integrating multi-dimensional feature information, and dynamically adjusting the weight distribution across feature maps. Experiments on the ImageNet dataset demonstrate that MG-CAM achieves satisfactory performance across various evaluation metrics. Additionally, robustness checks and ablation studies have been conducted on MG-CAM, which validate its sensitivity to model parameters and the effectiveness of the multi-gradient optimization strategy. A potential direction is provided for improving the interpretability of deep learning models.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-02
  • 最后修改日期:2024-10-19
  • 录用日期:2024-10-28
  • 在线发布日期:
  • 出版日期:
文章二维码