DSCP-UNet:路面痕量裂缝的轻量级检测方法
DOI:
作者:
作者单位:

安徽理工大学

作者简介:

通讯作者:

中图分类号:

TP391.7

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


DSCP-UNet: lightweight detection method for trace cracks in pavement
Author:
Affiliation:

Anhui University of Science and Technology

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有路面裂缝检测方法存在参数量多、精度低的问题,提出了路面痕量裂缝的轻量级检测方法DSCP-UNet。首先,通过构建轻量化卷积模块(diminutive group convolution,DGConv)和自适应池化模块(self-adaptive pooling,SAPool)达到维持检测精度和降低模型参数量的目的,并使用双通道注意力机制(convolutional block attention module,CBAM)提升模型对裂缝特征的关注度。其次,设计往返采样模块(pyramid attention with sampling group,PASG),增强模型分辨裂缝特征的能力。然后,基于特征融合结构,使用PixelShuffle上采样模块解决裂缝特征图边缘模糊的问题。最后,构造混合损失函数,解决数据集类别不平衡的问题。实验结果表明,所提方法参数量仅为3.07MB,且CFD任务测试的召回率为84.53%,F1值为72.76%,Crack500任务测试的召回率为71.36%,F1值为75.14%,综合性能优于UNet、CPFNet、PIDNet和DDRNet。DSCP-UNet具有轻量化、高精度和实时检测的优点,为路面裂缝的语义分割提供了解决方案。

    Abstract:

    Aiming to address the issues of high parameter count and low accuracy in existing pavement crack detection methods, a lightweight detection method named DSCP-UNet is proposed for detecting pavement cracks. Firstly, a diminutive group convolution module (DGConv) and a self-adaptive pooling module (SAPool) are constructed to maintain detection accuracy and reduce model parameters. Additionally, a convolutional block attention module (CBAM) is used to enhance the model's attention towards crack features. Next, the pyramid attention with sampling group (PASG) is designed to further improve the model's ability to discriminate crack features. Then, based on the feature fusion structure, the PixelShuffle up-sampling module is used to solve the problem of blurred edges of the crack feature map. Finally, a hybrid loss function is developed to address the issue of category imbalance in the dataset. Experimental results demonstrate that the proposed method, with only 3.07 MB of parameters, achieves a recall of 84.53% and an F1 score of 72.76% on the CFD task test, and 71.36% recall with an F1 score of 75.14% on the Crack500 task test. This performance surpasses that of UNet, CPFNet, PIDNet, and DDRNet in terms of overall effectiveness. DSCP-UNet stands out for its lightweight design, high precision, and real-time detection capability, offering a robust solution for semantic segmentation of pavement cracks.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-22
  • 最后修改日期:2024-08-03
  • 录用日期:2024-08-29
  • 在线发布日期:
  • 出版日期: