改进YOLOv7的绝缘子与均压环缺陷检测方法
DOI:
CSTR:
作者:
作者单位:

河南理工大学物理与电子信息学院

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

河南省高等学校青年骨干教师培养计划;河南省高等学校重点科研基金项目


Defect detection method of insulator and grading ring based on improved YOLOv7
Author:
Affiliation:

1.School of Physics & Electronic Information Engineering, Henan Polytechnic University;2.School of Physics &3.amp;4.Electronic Information Engineering, Henan Polytechnic University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对YOLOv7算法在复杂背景干扰下对输电线路中绝缘子与均压环进行检测时容易出现漏检、误检的问题,提出一种改进YOLOv7的输电线路绝缘子与均压环缺陷检测方法。首先,在主干网络中引入GSConv模块,实现不同通道间特征信息的交换,提高模型检测精度的同时降低了参数量;其次,将基于归一化的注意力(Normalization-based Attention,NAM)与C2f(CSPLayer_2Conv)结构相结合,构建NAM-C2f模块,重构原模型的Head网络,增强融合后特征的质量,提高了模型的检测精度;再次,引入全局注意力机制(Global Attention Mechanism,GAM)于检测层前,提升了对缺陷目标的识别能力,减少了漏检、误检问题的发生;最后,采用MPDIoU Loss作为模型的边框回归损失函数,提高了模型的收敛速度和回归精度。实验结果表明,改进后算法的平均精度均值达到了95.13%,相比于原算法提升了6.57%,参数量下降了5.59MB,有效提高了对输电线路中绝缘子与均压环缺陷目标的检测精度,改善了检测任务中出现的漏检和误检问题。

    Abstract:

    Aiming at the problem of missing detection and false detection when YOLOv7 algorithm detects insulators and grading rings in transmission lines under complex background interference, an improved YOLOv7 method for detecting defects of insulators and grading rings in transmission lines is proposed. Firstly, GSConv module is introduced into the backbone network to realize the exchange of characteristic information between different channels, which improves the accuracy of model detection and reduces the amount of parameters; Secondly, combining the Normalization-based Attention(NAM) with the C2f(CSPlayer_2Conv) structure, the NAM-C2f module is constructed to reconstruct the head network of the original model, enhance the quality of the fused features, and improve the detection accuracy of the model; Thirdly, the Global Attention Mechanism,GAM(GAM) is introduced in front of the detection layer to improve the recognition ability of defect targets and reduce the occurrence of missed detection and false detection; Finally, MPDIoU Loss is used as the frame regression loss function of the model to improve the convergence speed and regression accuracy of the model. The experimental results show that the average accuracy of the improved algorithm is 95.13%, which is 6.57% higher than the original algorithm, and the parameter quantity is reduced by 5.59MB, which effectively improves the detection accuracy of insulator and grading ring defects in transmission lines, and improves the problems of missed detection and false detection in the detection task.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-17
  • 最后修改日期:2024-08-03
  • 录用日期:2024-08-29
  • 在线发布日期:
  • 出版日期:
文章二维码