基于天空分割和暗亮通道先验的图像去雾方法
CSTR:
作者:
作者单位:

(吉林师范大学 数学与计算机学院, 吉林 四平 136000)

作者简介:

于 萍 (1979-),女,博士,教授,硕士生导师,主要从事计算机图像处理方面的研究。

通讯作者:

中图分类号:

TP391

基金项目:

吉林省自然科学基金(YDZJ202201ZYTS549)和辽宁省自然科学基金(2022-KF-12-03)资助项目


Image dehazing method based on sky segmentation and dark-bright channel priors
Author:
Affiliation:

(College of Mathematics and Computer, Jilin Normal University, Siping, Jilin 136000, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文针对传统去雾方法存在图像失真、对比度下降、饱和度过高、天空区域处理较差等问题,提出一种结合天空区域分割、暗通道先验(dark channel prior,DCP) 、亮通道先验(bright channel prior,BCP) 理论的图像优化去雾算法。首先求取有雾图像梯度图的香农熵,得到有雾图像的纹理图,纹理图可以粗略确定天空区域所在位置。再结合区域生长算法和Canny算子对天空区域进行精细分割,并在分割的天空区域内求取大气光值。此外,本文引入BCP理论,采用暗亮通道融合的方式估算透射率,最终根据大气散射模型得到清晰的无雾图像。实验表明,所提出的去雾算法能有效优化传统去雾算法在天空区域失效的问题,且得到的去雾图像更加满足人类视觉体验。同时,也有着较好的客观评价指标,验证了所提算法的可行性、有效性和优越性。

    Abstract:

    This paper proposes an optimized image dehazing algorithm that integrates sky region segmentation,dark channel prior (DCP),and bright channel prior (BCP) to address the limitations of traditional methods.such as image distortion,low contrast,over-saturation and poor sky-region handling. Firstly,the Shannon entropy of the gradient map is calculated from the hazy image to obtain the texture map of the foggy image,and the texture map can roughly determine the location of the sky region.Then,the sky region is precisely segmented by combining the region growing algorithm and the Canny operator,and the atmospheric light value is obtained in the final obtained sky region.In addition,this paper introduces the BCP theory and estimates the transmission rate by using the dark-bright channel priors.Finally,a clear haze-free image is obtained according to the atmospheric scattering model.Experimental results show that the proposed dehazed algorithm can effectively optimize the problem that the traditional dehazed algorithm fails in the sky region,and the obtained dehazing image is more satisfied with human visual experience.Furthermore,the algorithm achieves superior objective evaluation metrics,verifying its feasibility, effectiveness and superiority.

    参考文献
    相似文献
    引证文献
引用本文

张莹莹,乔弋洋,于萍.基于天空分割和暗亮通道先验的图像去雾方法[J].光电子激光,2025,(8):820~828

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-22
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-08
  • 出版日期:
文章二维码