自适应暗通道先验与中值大气光的图像去雾
CSTR:
作者:
作者单位:

(1.江西信息应用职业技术学院 软件工程系,江西 南昌 330043;2.嘉兴大学 数据科学学院,浙江 嘉兴 314001)

作者简介:

刘丽萍 (1982-),(女,黑龙江富锦人,硕士,副教授,研究方向为计算机图形学、数值计算、计算机模拟和信息处理。

通讯作者:

中图分类号:

TP391

基金项目:

江西省教育厅科学技术研究项目(GJJ204501)和浙江省自然科学基金(Y24A050006) 资助项目


Image dehazing based on adaptive dark channel prior and median atmospheric light
Author:
Affiliation:

(1.Department of Software Engineering, Jiangxi Vocational and Technical College of Information Application, Nanchang, Jiangxi 330043, China;2.College of Data Science, Jiaxing University, Jiaxing, Zhejiang 314001, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了在彻底去除雾霾效果的同时,避免产生光晕伪影和亮度偏暗等不足,提出了一种基于自适应暗通道先验与中值大气光的图像去雾方法。该方法提出了自适应的暗通道先验,根据像素邻域的亮度、饱和度以及标准差,自适应地确定求取暗通道的邻域大小,从而动态估计透射率,在保持图像适宜亮度的同时避免光晕伪影;选取亮度最大的10%像素,并以这些像素在3个通道内的中值作为大气光值;根据估计的透射率和大气光,利用大气散射模型对有雾图像进行去雾恢复。实验结果表明,本文方法处理后的有雾图像,在视觉效果上优于现有方法,信息熵和平均梯度分别比现有方法提高了2.12%和5.58%,且直方图分布更合理。因此,本文方法能更有效地应用于图像去雾。

    Abstract:

    To completely remove the haze effect while avoiding shortcomings,such as halo artifacts and low brightness,this paper proposes an image dehazing method based on adaptive dark channel prior and median atmospheric light. In this method,an adaptive dark channel prior is introduced,which adaptively determines the neighborhood size for calculating the dark channel based on the brightness,saturation,and standard deviation of each pixel′s neighborhood,thereby estimating the transmittance dynamically to maintain appropriate image brightness and avoid halo artifacts.The top 10% brightest pixels are selected,and the median value of these pixels in each of the three channels is taken as the atmospheric light value.Based on the estimated transmittance and atmospheric light,the hazed image is restored using the atmospheric scattering model.Experimental results demonstrate that the proposed method outperforms existing methods in terms of visual effect,with information entropy and average gradient improved by 2.12% and 5.58%,respectively,and a more reasonable histogram distribution. Therefore, the proposed method can be more effectively applied to image dehazing.

    参考文献
    相似文献
    引证文献
引用本文

刘丽萍,吴微微,姚成贵.自适应暗通道先验与中值大气光的图像去雾[J].光电子激光,2025,(8):812~819

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-08
  • 出版日期:
文章二维码