基于多尺度特征融合和注意力机制的医学图像分割网络
DOI:
CSTR:
作者:
作者单位:

(1.西南石油大学 电气信息学院,四川 成都 610500; 2.西藏大学 信息科学技术学院,西藏 拉萨 850000)

作者简介:

王龙业 (1976-),男,博士,教授,硕士生导师,主要从事计算机视觉、通信信号设计等方面的研究。

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61261021, 61561045)和四川省科技计划项目(2019JDRC0012)资助项目


Medical image segmentation network based on multi-scale feature fusion and attention mechanism
Author:
Affiliation:

(1.School of Electronics and Information Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China;2.School of Information Science and Technology, Tibet University, Lhasa, Tibet 850000, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统编解码结构的医学图像分割网络存在特征信息利用率低、泛化能力不足等问题,该文提出了一种结合编解码模式的多尺度语义感知注意力网络(multi-scale semantic perceptual attention network,MSPA-Net) 。首先,该网络在解码路径加入双路径多信息域注意力模块(dual-channel multi-information domain attention module,DMDA) ,提高特征信息的提取能力;其次,网络在级联处加入空洞卷积模块(dense atrous convolution module,DAC) ,扩大卷积感受野;最后,借鉴特征融合思想,设计了可调节多尺度特征融合模块 (adjustable multi-scale feature fusion,AMFF) 和双路自学习循环连接模块(dual self-learning recycle connection module,DCM) ,提升网络的泛化性和鲁棒性。为验证网络的有效性,在CVC-ClinicDB、ETIS-LaribPolypDB、COVID-19 CHEST X-RAY、Kaggle_3m、ISIC2017和Fluorescent Neuronal Cells等数据 集上进行验证,实验结果表明,相似系数分别达到了94.96%、92.40%、99.02%、90.55%、92.32%和75.32%。因此,新的分割网络展现了良好的泛化能力,总体性能优于现有网络,能够较好实现通用医学图像的有效分割。

    Abstract:

    Aiming at the problems of low utilization of feature information and insufficient generalization ability in the traditional medical image segmentation network with encoding and decoding structure,this paper proposes a multi-scale semantic perceptual attention network (MSPA-Net) combined with encoding and decoding mode.Firstly,the network adds a dual-channel multi-information domain attention module (DMDA) to the decoding path to improve the ability of feature information extraction.Secondly,the network adds a dense atrous convolution module (DAC) at the cascade to expand the convolution receptive field.Finally,based on the idea of feature fusion,an adjustable multi-scale features fusion module (AMFF) and a dual self-learning recycle connection module (DCM) are designed to improve the generalization and robustness of the network.To verify the effectiveness of the network,the experimental verification is carried out on CVC-ClinicDB,ETIS-LaribPolypDB,COVID-19 CHEST X-RAY,Kaggle_3m, ISIC2017,and Fluorescent Neuronal Cells datasetsand the similarity coefficients reach 94.96%, 92.40%,99.02%,90.55%,92.32% and 75.32% respectively.Therefore,the new segmentation network shows better generalization ability,the overall performance is better than the existing network,and can better achieve the effective segmentation of general medical images.

    参考文献
    相似文献
    引证文献
引用本文

王龙业,张凯信,曾晓莉,方东,李沁,马傲.基于多尺度特征融合和注意力机制的医学图像分割网络[J].光电子激光,2024,35(1):101~112

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-07-27
  • 最后修改日期:2022-10-28
  • 录用日期:
  • 在线发布日期: 2024-01-03
  • 出版日期:
文章二维码