基于深度学习的双期相CT肝癌检测算法
CSTR:
作者:
作者单位:

(1.河北工业大学 机械工程学院,天津 300103;2. 陆军航空兵学院,北京 101100;3.国家技术创新方法与实施工具工程技术研究中心,天津 300401;4.河北医科大学第四医院,河北 石家庄 050011)

作者简介:

王 琦 (1974-),男,博士,教授,硕士生导师,主要从事肿瘤影像方面的研究。

通讯作者:

中图分类号:

TP391

基金项目:

2022 年政府资助临床医学优秀人才培养项目 (冀财预复[2022]180号) 资助项目


Dual-phase CT liver cancer detection algorithm based on deep learning
Author:
Affiliation:

(1.School of Mechanical Engineering, Hebei University of Technology, Tianjin 300103, China;2.Army Aviation Institute, Beijing 101100;3.National Engineering Research Center for Technological Innovation Method and Tool, Hebei University of Technology, Tianjin 300401, China;4.Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    肝癌是一种恶性肿瘤,对其进行早期筛查和准确检测是提高治疗效果、延长患者生存期的关键。针对使用单期相计算机断层扫描(computed tomography,CT)图像难以准确检测复杂多变的肝癌的问题,本文提出一种基于FCOS(fully convolutional one-stage object detection)的双期相CT肝癌检测方法。首先构建了双期相肝脏CT四元组网络,并利用其匹配双期相肝脏CT切片,确保不同期相之间肝脏位置的一致性,为后续肝癌检测奠定基础。其次改造了FCOS网络以接收双期相CT图像的输入,设计并插入AFF(attention-based feature fusion)模块进行带混合注意力的特征融合,以提高肝癌检测的准确性。实验结果表明,改进算法在本文数据集上的平均精度 (average precision,AP)达到了78.56%,相比于单期相FCOS网络提高了4.9%,展现出更优越的性能。

    Abstract:

    Liver cancer is a kind of malignant tumor,early screening and accurate detection is the key to improve the treatment effect and prolong the survival of patients.In view of the difficulty of accurately detecting complex and variable liver cancer using single-phase computed tomography (CT) images,in this paper,a dual-phase CT method for liver cancer detection based on fully convolutional one-stage object detection (FCOS) is proposed.Firstly,the dual-phase liver CT quadtuple network is constructed and used to match the dual-phase liver CT slices to ensure the consistency of liver position between different phases and lay a foundation for the subsequent detection of liver cancer.Secondly,FCOS network is improved to receive input of dual-phase CT images,attention-based feature fusion (AFF) module is designed and inserted,and feature fusion with mixed attention is performed at the same time to improve the accuracy of liver cancer detection.The experimental results show that the average precision (AP) of the improved algorithm on the data set in this paper reaches 78.56%,which is 4.9% higher than that of the single-phase FCOS network,showing better performance.

    参考文献
    相似文献
    引证文献
引用本文

肖宏宇,杨伟东,王琦.基于深度学习的双期相CT肝癌检测算法[J].光电子激光,2025,(6):664~672

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-23
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-12
  • 出版日期:
文章二维码