基于高斯云改进的混沌麻雀搜索算法与应用
DOI:
CSTR:
作者:
作者单位:

(上海工程技术大学 电子电气工程学院,上海 201620)

作者简介:

龙英文 (1974-),男,博士,副教授,硕士生导师,主要从事研究方向为人工智能与图像处理方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61603241)资助项目


Improved chaotic sparrow search algorithm and application based on Gaussian cloud
Author:
Affiliation:

(School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统的麻雀搜索算法(sparrow search algorithm,SSA) 在寻优过程中存在易陷入局部最优,以及搜索能力不足的问题。为了解决上述问题,提出了一种基于高斯云改进的混沌改进麻雀搜索算法(improved sparrow search algorithm,ISSA)。首先,利用伯努利混沌映射初始化种群以提高算法初始种群质量;其次,在发现者位置更新中引入自适应高斯云变异策略来提高算法在迭代过程中的全局搜索能力;最后,利用t分布反向学习策略对最优位置进行随机反向学习,以提高算法跳出局部最优的能力。在仿真实验中将本算法与其他4种基本算法利用13种基准测试函数进行对比实验,同时与其他的ISSAs进行对比。实验结果表明,本算法具有良好的收敛性以及精度,且全局探索能力相较于原算法大大提高。并将ISSA应用于Kapur熵多阈值图像分割任务中,结果表明,ISSA相较于其他4种基本算法有着更高的分割精度。

    Abstract:

    The traditional sparrow search algorithm (SSA) has the problems that it is easy to fall into the local optimum and the search ability is insufficient in the process of optimization.In order to solve the above problems,an improved sparrow search algorithm (ISSA) based on Gaussian cloud improvement is proposed.First,Bernoulli chaotic mapping is used to initialize the population to improve the initial population quality of the algorithm;secondly,an adaptive Gaussian cloud mutation strategy is introduced in the update of the finder position to improve the global search ability of the algorithm in the iterative process;finally,the reverse t distribution learning strategy is used to perform random reverse learning on the optimal position to improve the algorithm′s ability to jump out of the local optimum.In the simulation experiment,this algorithm is compared with other four basic algorithms with 13 benchmark functions,and compared with other ISSAs.The experimental results show that the algorithm has good convergence and accuracy,and the global exploration ability is greatly improved compared with the original algorithm.The ISSA is applied to the Kapur entropy multi-threshold image segmentation task,and the results show that ISSA has higher segmentation accuracy than the other four basic algorithms.

    参考文献
    相似文献
    引证文献
引用本文

顾嘉城,龙英文,吉明明,郑旸.基于高斯云改进的混沌麻雀搜索算法与应用[J].光电子激光,2023,34(10):1047~1058

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-27
  • 最后修改日期:2022-08-27
  • 录用日期:
  • 在线发布日期: 2023-10-24
  • 出版日期:
文章二维码