联合特征细化和耐噪声对比学习的无监督行人重识别
DOI:
CSTR:
作者:
作者单位:

(1.安徽工程大学 电气工程学院,安徽 芜湖 241000; 2.检测技术与节能装置安徽省重点实验室,安徽 芜湖 241000; 3.高端装备先进感知与智能控制教育部重点实验室,安徽 芜湖 241000)

作者简介:

王凤随 (1981-),男,博士,教授,硕士生导师,主要从事图像与视频信息处理和计算机视觉等方面的研究.

通讯作者:

中图分类号:

基金项目:

安徽省自然科学基金(2108085MF197,1708085MF154)、安徽高校省级自然科学研究重点项目 (KJ2019A0162 )、检测技术与节能装置安徽省重点实验室开放基金 (DTESD2020B02)、安徽工程大学国家自然科学基金预研项目(Xjky2022040)和安徽高校研究生科学研究项目(YJS20210448,YJS20210449)资助项目


Joint feature refinement and noise-tolerant comparative learning for unsupervised person re-identification
Author:
Affiliation:

(1.School of Electrical Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China;2.Anhui Key Laboratory of Detection Technology and Energy Saving Devices, Wuhu, Anhui 241000, China;3.Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment, Ministry of Education, Wuhu, Anhui 241000, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无监督行人重识别(person re-identification,ReID) 中行人特征表达不充分以及聚类过程产生噪声标签的问题,提出一种联合特征细化和耐噪声对比学习的无监督ReID方法。首先,为丰富无标记的行人表征,设计了非局部通道细化模块(non-local channel refinement module,NCRM)对关键特征信息进行加权强化,其融合了非局部通道的重要特征来捕获无标记数据的类间区别表征,形成更具有鉴别度的特征描述符。其次,考虑到特征的充分表达,采用广义均值(generalized mean,GEM)池化自适应调整参数来增强不同细粒度区域信息的提取能力。再次,为了减轻噪声标签对网络的负面影响,设计了耐噪声的动态对比均衡(dynamic contrastive equilibrium,DCE)损失函数进行无监督联合学习。最终,在两个公共数据集上的实验结果验证了所提方法的有效性和先进性,mAP分别达到了83.1%和71.9%,优于其他先进方法。

    Abstract:

    An unsupervised person re-dentification (ReID) method was proposed to solve the insufficient representation of person features and the noisy labels generated by the clustering process in the process of unsupervised ReID,which jointed feature refinement and noise-tolerant comparative learning.Firstly,a non-local channel refinement module (NCRM) was designed to enrich the unlabeled person representation by weighted reinforcement of key feature information,which fused the important features of non-local channel to capture the discriminative representation between classes of unlabeled data to form more discriminative feature descriptors.Secondly,generalized mean (GEM) pooling adaptive adjustment parameters were used to enhance the ability of extract information from different fine-grained regions to accomplish full expression of characteristics.Then,a noise-tolerant dynamic contrastive equalization (DCE) loss was designed for unsupervised associated learning to mitigate the negative impact of noisy label on the network.Finally,the experimental results on two public datasets verify the effectiveness and advancement of the proposed method.The mAPreaches 83.1 % and 71.9 % respectively,which is superior to other advanced methods.

    参考文献
    相似文献
    引证文献
引用本文

钱亚萍,王凤随,熊磊,闫涛.联合特征细化和耐噪声对比学习的无监督行人重识别[J].光电子激光,2023,34(7):762~770

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-06
  • 最后修改日期:2022-09-17
  • 录用日期:
  • 在线发布日期: 2023-07-24
  • 出版日期:
文章二维码