基于改进YOLOv5的动车组关键部件缺陷检测
DOI:
CSTR:
作者:
作者单位:

(1.天津工业大学 控制科学与工程学院,天津 300387; 2.天津工业大学 机械工程学院,天津 300387; 3.天津工业大学 电工电能新技术天津市重点实验室,天津 300387)

作者简介:

徐国伟 (1972-),男,工学博士,教授,硕士生导师,研究方向为智能控制理论与人工智能.

通讯作者:

中图分类号:

基金项目:

天津市自然科学基金(18JCYBJC88300)资助项目


Defect detection of key components of electric multiple units based on improved YOLOv5
Author:
Affiliation:

(1.School of Control Science and Engineering, Tiangong University, Tianjin 300387, China;2.School of Mechanical Engineering, Tiangong University, Tianjin 300387, China;3.Tianjin Key Laboratory of Advanced Electrical Engineering and Energy Technology, Tiangong University, Tianjin 300387, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前动车组(electric multiple units,EMUs) 关键部件缺陷检测模型复杂、小目标漏检率高和检测效率低的问题,提出一种基于改进YOLOv5的缺陷检测方法。该方法在利用生成对抗网络(generative adversarial network,GAN)进行数据增强的基础上,采用轻量级网络MobileNetV3-large对YOLOv5m主干网络进行替换,同时使用深度可分离卷积优化颈部3×3网络结构,以降低模型的参数量和计算量;在改进后的主干网络中引入坐标注意力机制(coordinate attention,CA),以捕获小目标的位置信息和通道信息,增强网络的特征表达能力;对非极大值抑制(non-max suppression,NMS)算法进行优化,融入重叠检测框中心点的位置信息,以提升预测框的定位准确性。在EMUs缺陷数据集上的实验结果表明,本文提出的检测模型相较于YOLOv5m,参数量减少了77%,计算量降低了80.9%,单张图片的检测时间减少了31.7%,平均精度均值(mean average precision,mAP)可达到0.804。另外,在NEU-DET数据集上的实验结果表明,改进后的模型也具有较强的泛化能力。

    Abstract:

    At present,the defect detection of key components of electric multiple units (EMUs) has the problems of complex model, high missed detection rate of small targets and low detection efficiency.To solve the existing problems,a defect detection method based on improved YOLOv5 is proposed.On the basis of using generative adversarial network (GAN) to expand the dataset,the YOLOv5m backbone extraction network is changed to the MobileNetV3-large network structure,and the neck 3×3 convolution layer is optimized by using depthwise separable convolution to further reduce the model complexity.Then,the coordinate attention (CA) is introduced into the improved backbone network to capture the location information and channel information of small targets, thereby enhancing the feature expression ability of the network.The non-max suppression (NMS) algorithm is optimized by integrating the position information of the center point of the overlapping detection box to improve the accuracy of the prediction box location.The experimental results on the EMUs defect dataset show that,compared with YOLOv5m,the improved model reduces the amount of parameters by 77%,the amount of computation by 80.9%,the detection time of a single image by 31.7%, and the mean average precision (mAP) can reach 0.804.In addition,the experimental results on the NEU-DET dataset show that the improved model also has a strong generalization ability.

    参考文献
    相似文献
    引证文献
引用本文

徐国伟,林辉,修春波,杨楠,刘铭阳.基于改进YOLOv5的动车组关键部件缺陷检测[J].光电子激光,2023,34(7):752~761

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-20
  • 最后修改日期:2022-07-16
  • 录用日期:
  • 在线发布日期: 2023-07-24
  • 出版日期:
文章二维码