基于张量主成分分析的非线性双转子系统故障诊断方法
DOI:
CSTR:
作者:
作者单位:

(1.天津理工大学 机械工程学院 天津市先进机电系统设计与智能控制重点实验室,天津 300384; 2.天津理工大学 机电工程国家级实验教学示范中心,天津 300384)

作者简介:

邢恩宏 (1968-),男,大学,实验师,主要从事机械设计、机构、控制、故障诊断以及信号的特征提取与分类识别方面的研究.

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2018AAA0103004)和天津市科技计划重点项目(20YFZCGX00550)资助相目


Method of fault diagnosis of nonlinear dual-rotor system based on multilinear principal component analysis of tensor objects
Author:
Affiliation:

(1.Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China;2.National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对双转子在高速运转时难以从高、低压转子耦合出现的复杂振动现象中提取到有效的振动特征,及目前缺乏对其相应的研究等问题,本文提出一种采用张量主成分分析(multilinear principal component analysis of tensor objects,MPCA)与K-最近邻 (K-nearest neighbor,KNN) 分类相结合的方法,并将其用于非线性双转子系统的故障诊断。首先采用集中质量法创建非线性裂纹双转子模型及其动力学方程,针对裂纹开合角度变化分析高、低压转子的振动特性。再将振动能量信号与振动信号归一化为彩色图像样本,使用MPCA算法对故障特征进行压缩提取。最后使用KNN分类算法对不同裂纹开合角度情况进行特征分类,并计算相应的分类率。实验结果表明,在转子高速区域含有低噪声的情况下,MPCA可以有效地区分不同裂纹程度的特征信号,为非线性双转子裂纹系统的故障诊断提供了新的检测策略。

    Abstract:

    In view of difficulties in extracting effective vibration characteristics from complex vibration phenomena that are occurred when coupled with high pressure and low pressure rotors of a dual-rotor runs high-speed operation,and there aren′t corresponding researches.So,this paper proposes a method that combines multilinear principal component analysis of tensor objects (MPCA) and K-nearest neighbor (KNN) classification and applies it to fault diagnoses of nonlinear dual-rotor systems.Firstly,a nonlinear cracked dual-rotor model and its dynamic equations are created using the concentrated mass method,and the vibration characteristics of high pressure and low pressure rotors are analyzed based on the changes of crack angles.Then,the vibration energy signal and the vibration signal are normalized into color image samples,and the MPCA algorithm is used to compress and extract the fault features.Lastly,the KNN classification algorithm is used to classify the features of different crack angles, and the corresponding classification rates are calculated.The experimental results show that,in the high-speed region of the rotor,MPCA can effectively distinguish different degrees of cracked characteristic signals in the case of low noise,and provides a new detection method for fault diagnoses of nonlinear cracked dual-rotor systems.

    参考文献
    相似文献
    引证文献
引用本文

王肖锋,冯俊杰,刘军,邢恩宏.基于张量主成分分析的非线性双转子系统故障诊断方法[J].光电子激光,2023,34(7):734~742

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-24
  • 最后修改日期:2023-05-25
  • 录用日期:
  • 在线发布日期: 2023-07-24
  • 出版日期:
文章二维码