OFDM系统中一种基于NE-MCRNNet的信道估计方案
DOI:
作者:
作者单位:

重庆邮电大学光纤通信技术重点实验室

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(61971079)


A Channel Estimation Scheme Based on the NE-MCRNNet for OFDM Systems
Author:
Affiliation:

Chongqing University of Posts & Telecommunications

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有基于深度学习的OFDM系统信道估计算法存在信噪比不匹配时估计性能不足和信道特征提取不充分的问题,提出了一种基于噪声估计与多尺度信道重建神经网络(NE-MCRNNet)的信道估计方案。首先,设计噪声估计网络,对当前传输环境进行信噪比估计,然后,构建多尺度信道重建网络并根据估计得到的信噪比值进行网络选取,对导频处的信道矩阵采用多尺度特征提取进行信道重建,增强了信道不同尺度信息的提取能力,最后利用残差结构专注学习高频差异完成信道估计。仿真结果表明:该信道估计方案可以获得比传统信道估计更好的估计结果,并且可以更好地适应信噪比不匹配的情况。因而该信道估计方案能较好地满足OFDM系统信道估计的要求。

    Abstract:

    Aiming at the problems that there are the insufficient estimation performance and the inadequate channel feature extraction when the existing channel estimation algorithms based on the deep learning for OFDM systems generate the mismatch of the signal-to-noise ratio(SNR), a channel estimation scheme based on the noise estimation and multiscale channel reconstruction neural network (NE-MCRNNet) is proposed. Firstly, the noise estimation network is designed to estimate the SNR of the current transmission environment, and then the multiscale channel reconstruction network is constructed and the network is selected according to the estimated SNR value, the channel matrix at the pilot frequency is reconstructed by using the multiscale feature extraction for channel reconstruction, the ability of extracting the channel information at different scales is enhanced, finally, the channel estimation is accomplished by using the residual structure to focus on learning the high-frequency differences. The simulation result shows that the proposed channel estimation scheme can obtain the better estimation results than the traditional channel estimation, and can better adapt to the case of the SNR mismatch, so the proposed channel estimation scheme can better meet the channel estimation requirements of OFDM systems.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-23
  • 最后修改日期:2023-12-23
  • 录用日期:2024-01-05
  • 在线发布日期:
  • 出版日期: