利用高光谱图像实现生菜失水率和新鲜度预测
CSTR:
作者:
作者单位:

(1.安徽建筑大学 电子与信息工程学院,安徽 合肥 260601;2.安徽建筑大学 安徽省古建筑智能感知与高维建模国际联合研究中心,安徽 合肥 230601)

作者简介:

邵 慧 (1979-),女,博士,教授,硕士生导师,研究方向为高光谱激光雷达、雷达信号处理、数字图像信号处理等 。

通讯作者:

中图分类号:

O657.3

基金项目:

国家自然科学青年科学基金(62105002)、红外与低温等离子体安徽省重点实验室开放课题(IRKL2023KF04)、安徽省住房城乡建设科学技术计划项目(2022-YF077)、光学信息与模式识别湖北省重点实验室开放课题研究基金(202204)和安徽省高校协同创新项目(GXXT-2022-015)资助项目


Prediction of the water loss rate and freshness for lettuce using hyperspectral imaging
Author:
Affiliation:

(1.School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei, Anhui 260601, China;2.Anhui International Joint Research Center for Intelligent Perception and High-dimensional Modeling of Ancient Buildings, Anhui Jianzhu University, Hefei, Anhui 230601, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了验证光谱与生菜失水率、叶绿素和新鲜度之间的关系,本文利用可见光近红外(Vis-NIR)(280—1 100 nm)的高光谱成像系统,采集不同存放条件、不同存放时间的生菜光谱数据,同时测量其失水变化量和叶绿素含量。采用标准正态变异( standard normal variate, SNV)、多元散射校正(multicative scatter correction, MSC)、卷积平滑法(Savitzky-Golay, S-G)对原始光谱进行预处理,随后采用一阶差分、二阶差分方法进行光谱分析,在此基础上以竞争自适应重加权采样(Competitive adaptive reweighted sampling, CARS)算法和连续投影算法(successive projection algorithm, SPA)选择特征波长。利用偏最小二乘支持向量机(partial least squares support vector machine, PLS-SVM)和BP神经网络(BP neural network, BPNN)分别建立原始光谱和特征波长的预测模型,实现对生菜新鲜度和失水率的预测。结果表明,BPNN预测效果较好,失水率预测精度达82.5%,新鲜度预测精度高达95%。最后利用主成分分析(principal component analysis, PCA)方法分析不同存放时间的光谱变化,提取主成分图像,可视化蔫萎过程,与室温相比,泡水和冷藏存放条件下的新鲜生菜在蔫萎过程中表现出明显的延迟。此外,由于叶绿素含量在不同时间段内呈现先增加后减小的趋势,故用叶绿素含量无法正确描述生菜新鲜度。可见,高光谱成像技术可实现生菜新鲜度和失水率的有效判定。

    Abstract:

    In order to verify the relationship between spectrum and lettuce water loss rate,chlorophyll and freshness,this research employed Vis-NIR (280—1 100 nm) hyperspectral imaging system to collect the spectral data of lettuce under different storage conditions with different storage times,and measured the water loss change and chlorophyll content at the same time.The original spectra were preprocessed by standard normal variate (SNV),multicative scatter correction (MSC),Savitzky-Golay (S-G),which were further analyzed by the first-order differential and second-order differential methods and then the characteristic wavelength was selected by competitive adaptive reweighted sampling (CARS) algorithm and successive projection algorithm (SPA).The prediction models were established with the original spectrum and characteristic wavelength respectively by partial least squares support vector machine (PLS-SVM) and BP neural network (BPNN) to predict the freshness and water loss rate of lettuce.The results show that BPNN has a satisfactory predicting accuracy,and the prediction accuracy of water loss rate reaches 82.5% and the prediction accuracy of freshness is as high as 95%.Finally,spectral changes at different storage times were analyzed by principal component analysis (PCA),and the principal component images were extracted to visualize the wilting process,then,it demonstrated that fresh lettuce under soaking and refrigerated storage conditions showed a significant delay in the wilting process compared with that at room temperature.In addition,the chlorophyll content could not be used to correctly describe lettuce freshness because it showed a trend of increasing and then decreasing in different time periods.It can be seen that the hyperspectral imaging technology can realize the effective determination of lettuce freshness and water loss rate.

    参考文献
    相似文献
    引证文献
引用本文

邵慧,杨丽娟,王程,陈冲,胡玉霞,孙龙.利用高光谱图像实现生菜失水率和新鲜度预测[J].光电子激光,2025,(3):248~257

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-22
  • 出版日期:
文章二维码