基于机器学习的水下光通信信道估计与信号解调算法仿真研究
CSTR:
作者:
作者单位:

(1.长春理工大学 电子信息工程学院,吉林 长春 130012;2.长春理工大学 中山研究院,广东 中山 528437;3.长春理工大学 光电工程学院,吉林 长春 130012)

作者简介:

张 鹏 (1985-),男,博士,研究员,博士生导师,主要从事大气/水下/空间激光通信技术、激光调制解调及光纤激光技术等方面的研究。

通讯作者:

中图分类号:

TN929.1

基金项目:

国家自然科学基金重点项目(62231005)、国家重点研发计划(2022YFB2903402)、吉林省第二十批创新创业人才资助项目和吉林省教育厅基金(JJKH20220746KJ, JJKH20220771KJ) 资助项目


Simulation on machine learning-based underwater optical communication channel estimation and signal demodulation algorithm
Author:
Affiliation:

(1.School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, Jilin 130012, China;2.Zhongshan Institute, Changchun University of Science and Technology, Zhongshan, Guangdong 528437, China;3.School of Optoelectronic Engineering, Changchun University of Science and Technology,Changchun, Jilin 130012, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在水下无线光通信系统中,水的吸收、散射以及湍流等效应将造成信道估计与信号检测的困难,从而导致了通信误比特率(bit error rate,BER)升高,甚至无法通信。针对水下复杂信道下光通信信道估计与信号检测的难题,提出了基于机器学习(machine learning,ML)的信道估计与解调算法,研究其在直流偏置光-正交频分复用(direct current biased optical-orthogonal frequency division multiplexing,DCO-OFDM)光通信系统中水下信道估计及信号检测性能。首先基于所提信道估计与解调算法(深度神经网络(deep neural network,DNN)和无监督学习的k-means星座解调器)完成复杂信道频率响应、二次均衡及误比特分析的仿真建模。其次对比传统最小二乘法(least squares,LS)、线性最小均方误差(linear minimum mean square error,LMMSE)信道估计算法及最小距离解调算法,完成复杂信道下光通信信噪比(signal-to-noise ratio,SNR)增益等研究。仿真结果中,在湍流闪烁指数为0.18、距离为10 m的水下信道中,当子载波为8阶正交幅度调制(quadrature amplitude modulation,QAM)、误比特率为10-5时,所提信道估计算法相比LS与LMMSE估计分别有大于6 dB与1 dB的信噪比增益。另外采用所提信号检测算法,对比传统算法有大于1 dB的SNR增益。仿真结果表明,所提出基于ML的信道估计与解调算法可提高复杂信道水下光通信的性能。研究结果为远距离、高速复杂水下光通信系统设计提供一定参考。

    Abstract:

    In underwater wireless optical communication systems,the effects of water absorption,scattering,and turbulence make channel estimation and signal detection different,leading to increased communication bit error rates (BER) and even communication failure.To address the difficulties of channel estimation and signal detection in complex underwater channels for optical communication,a machine learning (ML)-based channel estimation and demodulation algorithm is proposed,and its performance in underwater channel estimation and signal detection in direct current biased optical-orthogonal frequency division multiplexing (DCO-OFDM)optical communication systems is studied.Firstly,based on the proposed channel estimation and demodulation algorithm (deep neural network (DNN) and unsupervised learning k-means constellation demodulator),simulation modeling of complex channel frequency response,second-order equalization,and bit error analysis are completed.Secondly,studies on the signal-to-noise ratio (SNR) gains in complex optical communication channels are conducted,comparing traditional least squares (LS),linear minimum mean square error (LMMSE) channel estimation algorithms,and minimum distance demodulation algorithms.In the simulation results,in an underwater channel with a turbulence scintillation index of 0.18 and a distance of 10 m,the proposed channel estimation algorithm provides a signal-to-noise ratio gain larger than 6 dB and 1 dB compared with the LS and LMMSE estimation for 8-order quadrature amplitude modulation (8-QAM) subcarriers at a bit error rate of 10-5.Additionally,using the proposed signal detection algorithm,an SNR gain larger than 1 dB is achieved compared with traditional algorithms.The simulation results demonstrate that the proposed ML-based channel estimation and demodulation algorithm can impraove the performance of complex underwater optical communication channels.The research results provide a reference for the design of long-distance,high-speed complex underwater optical communication systems.

    参考文献
    相似文献
    引证文献
引用本文

叶鹏飞,张鹏,伍文韬,于浩,范云龙,张鹏浩.基于机器学习的水下光通信信道估计与信号解调算法仿真研究[J].光电子激光,2025,(2):200~207

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-24
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-27
  • 出版日期:
文章二维码