G-YOLO v7:面向无人机航拍图像的目标检测算法
CSTR:
作者:
作者单位:

(1.嘉兴大学 信息科学与工程学院,浙江 嘉兴 314001;2.浙江师范大学 计算机科学与技术学院,浙江 金华 321004;3.浙江理工大学 计算机科学与技术学院(人工智能学院),浙江 杭州 310018)

作者简介:

贾小军 (1974-),男,博士,教授,硕士 生导师,研究方向为图像处理与模式识别、计算机视觉等 。

通讯作者:

中图分类号:

TP391.4

基金项目:

浙江省公益技术应用研究计划项目(LGG20F010010) 资助项目


G-YOLO v7:target detection algorithm for UAV aerial images
Author:
Affiliation:

(1.College of Information Science and Engineering, Jiaxing University,Jiaxing,Zhejiang 314001, China;2.School of Computer Science and Technology, Zhejiang Normal University, Jinhua, Zhejiang 321004, China;3.School of Computer Science and Technology (School of Artificial Intelligence), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统无人机(unmanned aerial vehicle,UAV) 目标检测算法存在漏检率高、检测成功率低、模型体积大等问题,提出一种新的基于GhostNet和注意力机制的大检测头网络结构的目标检测方法G-YOLO v7(GhostNet YOLO v7)。该技术在YOLO v7-tiny的基础上增加一个大尺寸160×160目标检测头以提升小目标检测能力,同时对网络进行轻量化处理。删除原有20×20的小检测头及其卷积结构,新增GhostNet卷积模块,以减少网络的参数量,降低模型体积,同时修改损失函数为WIoU(wise intersection over union),增加PCBAM(parallel convolutional block attention module)注意力模块以提升检测精度。实验结果表明,基于G-YOLO v7网络结构的目标检测的mAP@0.5为42.3%,较YOLO v7-tiny提升5.2%,较YOLO 提升7.4%。G-YOLO v7的参数量和模型体积仅为YOLO v7-tiny的33.9%和37.9%,YOLO v8n的64%和75.6%,能够有效地应用于无人机航拍图像目标检测。

    Abstract:

    A new target detection method GhostNet YOLO v7 (G-YOLO v7) based on GhostNet and attention mechanism with large detection head network structure is proposed to solve the problems of high missed detection rate,low detection success rate and large model volume of traditional unmanned aerial vehicle (UAV) target detection algorithm.This technology adds a large 160×160 target detection head on the basis of YOLO v7-tiny to improve the small target detection ability,and lightweight processing is performed on the network.The original 20×20 minimum detection head and its convolution structure are deleted,and GhostNet convolution module is added to reduce the number of network parameters and model volume.At the same time,the loss function is modified to wise intersection over union (WIoU),and parallel convolutional block attention module (PCBAM) is added to improve the detection accuracy.The experimental results show that the mAP@0.5 of target detection based on G-YOLO v7 network structure is 42.3%,which is 5.2% higher than that of YOLO v7-tiny,7.4% higher than that of YOLO v8n.The parameter quantity and model volume of G-YOLO v7 are only 33.9% and 37.9% of YOLO v7-tiny respectively,64% and 75.6% of YOLO v8n respectively,which can be effectively applied to unmanned aerial vehicle aerial image target detection.

    参考文献
    相似文献
    引证文献
引用本文

陈卫彪,贾小军,朱响斌,冉二飞,魏远旺. G-YOLO v7:面向无人机航拍图像的目标检测算法[J].光电子激光,2025,(2):146~157

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-17
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-27
  • 出版日期:
文章二维码