基于机器视觉的嵌入式铝合金激光除漆检测系统
DOI:
CSTR:
作者:
作者单位:

(河北工业大学 机械工程学院,天津 300401)

作者简介:

王 涛 (1963-),男,博士,教授,硕士生导师,主要从事机电设备一体化方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金( 51775166)资助项目


Embedded aluminum alloy laser paint removal detection system based on machine vision
Author:
Affiliation:

(School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对自动化激光除漆领域铝合金表面除漆质量无法快速检测这一问题,设计了基于机器视觉的嵌入式铝合金激光除漆检测系统,嵌入式系统采用工业相机实时采集工作画面;基于Wi-Fi(wireless fidelity)无线模块,通过RTP(real-time transport protocol)和UDP(user datagram protocol)协议实现了工作画面的实时传输,通过TCP(transmission control protocol)协议实现了指令与检测数据的可靠传输;利用机器视觉算法实现了除漆不合格区域的准确检测,实际测试表明,嵌入式激光除漆检测系统能够稳定地传输工作画面、指令与检测数据,可快速、高效地识别除漆不合格区域,检测准确率94%以上。

    Abstract:

    Aiming at the problem that the quality of aluminum alloy surface depainting cannot be quickly detected in the field of automatic laser depainting,an embedded aluminum alloy laser depainting detection system based on machine vision is designed.The embedded system uses an industrial camera to collect working pictures in real time.Based on wireless fidelity (Wi-Fi) wireless module,the real-time transmission of working picture is realized through real-time transport protocol (RTP) and user datagram protocol (UDP),and the reliable transmission of instruction and detection data is realized through transmission control protocol (TCP).The machine vision algorithm is used to detect the unqualified area of paint removal accurately.The actual test shows that the embedded laser paint removal detection system can stably transmit the working picture, instructions and detection data,and can identify the unqualified areas of paint removal quickly and efficiently.The detection accuracy is more than 94%.

    参考文献
    相似文献
    引证文献
引用本文

李宇彬,王涛,杨紫幡,李道齐,王书文.基于机器视觉的嵌入式铝合金激光除漆检测系统[J].光电子激光,2023,34(4):434~440

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-19
  • 最后修改日期:2022-06-02
  • 录用日期:
  • 在线发布日期: 2023-04-13
  • 出版日期:
文章二维码