结合线性景深和自适应雾浓度的去雾算法
DOI:
CSTR:
作者:
作者单位:

(兰州交通大学 电子与信息工程学院,甘肃 兰州 730030)

作者简介:

杨 燕 (1972-),女,博士,兰州交通大学教授,硕士生导师,主要从事数字图像处理、智能信息处理及语音信号处理方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61561030)、甘肃省高等学校产业支撑计划项目(2021CYZC-04)和兰州交通大学研究生教改项目(JG201928)资助项目


Dehazing algorithm combining linear scene depth and adaptive hazy concentration
Author:
Affiliation:

(School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou,Gansu 730030, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对图像去雾中由于景深和大气光估计不准确等问题,导致军事监测、目标检测、导航、无人驾驶等系统成像设备获取到的图像质量下降,提出一种结合线性景深估计和自适应雾浓度估计的去雾算法。首先,依照景深与亮度分量和饱和度的关系,利用双滤波优化二者高亮区域,结合线性转换建立线性模型估计景深。然后,提取纹理特征构造雾浓度模型求取自适应散射系数,通过所求景深与自适应散射系数得到透射率。最后,根据对雾图是否含有天空区域的判决,采用两种不同的大气光估计方法。实验结果通过与不同去雾算法定性和定量分析,所提出的方法在保留深度边缘、颜色质量及细节方面具有良好的有效性和鲁棒性,图像恢复质量也相对较佳。

    Abstract:

    In response to the problems in image dehazing such as inaccurate scene depth and atmospheric light estimation,which lead to the degradation of image quality acquired by imaging devices for military surveillance,target detection,navigation,unmanned vehicles and other systems,a dehazing algorithm combining linear scene depth estimation and adaptive hazy concentration estimation is proposed.First,according to the relationship between scene depth and brightness component and saturation, a linear model is established to estimate the scene depth by using double filtering to optimize the high brightness region of both,combined with linear transformation.Then,the texture features are extracted to construct a hazy concentration model to obtain the adaptive scattering coefficient,the transmittance is obtained through the obtained scene depth and adaptive scattering coefficient .Finally,two different atmospheric light estimation methods are used according to the verdict on whether the hazy image contains sky regions.The experimental results are analyzed qualitatively and quantitatively with different dehazing algorithms,the proposed method has good effectiveness in preserving depth edge,color quality and detail, and the image recovery quality is relatively good.

    参考文献
    相似文献
    引证文献
引用本文

张帅,杨燕,林雷.结合线性景深和自适应雾浓度的去雾算法[J].光电子激光,2023,34(4):387~396

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-14
  • 最后修改日期:2022-06-08
  • 录用日期:
  • 在线发布日期: 2023-04-13
  • 出版日期:
文章二维码