基于邻域聚合与深度学习的小样本荒漠草原物种分类
DOI:
CSTR:
作者:
作者单位:

(内蒙古农业大学 机电工程学院,内蒙古 呼和浩特 010018)

作者简介:

杜建民 (1960-),男,博士,教授,博士生导师,主要从事环境测控技术与装备智能化方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(31660137)资助项目


Classification of small sample desert grassland species based on neighborhood aggregation and deep learning
Author:
Affiliation:

(College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着气候变化和人类活动的影响,内蒙古草原逐渐荒漠化。为了解决传统地面调查的局限性,以及高光谱数据小样本分类难的问题。本文利用无人机(unmanned aerial vehicle,UAV) 高光谱遥感技术对荒漠草原物种进行数据采集,并提出一种邻域聚合算法结合深度学习的小样本分类方法。首先,通过遗传算法(genetic algorithm,GA) 与最佳指数因子(optimum index factor,OIF) 对高光谱数据进行波段选择;其次,构建高光谱数据邻域特征,采用邻域聚合算法对其进行邻域特征融合;最后,采用多层感知机(multilayr perceptron,MLP) 对融合后的特征进行分类。结果表明,邻域聚合算法在每类地物只有10个样本的情况下总体精度可达93.41%,Kappa系数为0.912 0;并与SVM和多种深度学习模型对比,邻域聚合算法计算效率高、模型大小最小、分类精度最高。该方法的提出,满足草原物种识别要求,为草原生态系统的动态监测提供新方法。

    Abstract:

    With the influence of climate change and human activities,the grasslands in Inner Mongolia are gradually desertifying.In order to solve the limitation of traditional ground survey and the problem of difficulty to classify small samples of hyperspectral data,in this paper,we use unmanned aerial vehicle (UAV) hyperspectral remote sensing technology to collect data on desert grassland species and propose a small sample classification method with a neighborhood aggregation algorithm combined with deep learning.Firstly,the band selection of hyperspectral data is performed by a genetic algorithm (GA) with the optimum index factor (OIF).Secondly,the neighborhood features of hyperspectral data are constructed,and the neighborhood aggregation algorithm is used to fuse the neighborhood features.Finally, the fused features are classified by a multilayer perceptron (MLP).The results show that the overall accuracy of the neighborhood aggregation algorithm can reach 93.41% with only 10 samples per class of features,and the Kappa coefficient is 0.912 0;compared with SVM and various deep learning models,the neighborhood aggregation algorithm has high computational efficiency,the smallest model size,and the highest classification accuracy.The proposed method meets the requirements of grassland species identification and provides a new method for the dynamic monitoring of grassland ecosystems.

    参考文献
    相似文献
    引证文献
引用本文

张涛,杜建民,毕玉革,朱相兵,高新超.基于邻域聚合与深度学习的小样本荒漠草原物种分类[J].光电子激光,2023,34(3):291~298

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-01
  • 最后修改日期:2022-06-02
  • 录用日期:
  • 在线发布日期: 2023-03-31
  • 出版日期:
文章二维码