基于增量行列二维主成分分析的深度子空间网络
CSTR:
作者:
作者单位:

(1.天津理工大学 天津市先进机电系统设计与智能控制重点实验室,天津 300384;2.天津理工大学 机电工程国家级实验教学示范中心,天津 300384)

作者简介:

王肖锋 (1977-),男,博士,副教授,硕士生导师,主要从事机器学习与模式识别、图像处理与机器视觉方面的研究。

通讯作者:

中图分类号:

TP312

基金项目:

国家重点研发计划(2018AA0103004)和天津市科技计划重大专项(20YFZCGX00550) 资助项目


A new deep subspace network based on incremental row-column two-dimensional principal component analysis
Author:
Affiliation:

(1.Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control,School of Mechanical Engineering,Tianjin University of Technology,Tianjin 300384,China;2.National Demonstration Center for Experimental Mechanical and Electrical Engineering Education,Tianjin University of Technology,Tianjin 300384,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    主成分分析网络(principal component analysis network,PCANet)是一种基于卷积神经网络模型进行简化的深度子空间网络模型。针对PCANet在卷积核提取过程中无法对图像样本进行实时处理的问题,本文提出了一种基于增量行列二维主成分分析方法(incremental sequential row-column 2DPCA,IRC2DPCA)的增量行列二维主成分分析网络(incremental sequential row-column 2DPCA network,IRC2DPCANet)。该方法可以在卷积核的训练过程中对训练样本进行实时处理,从而提高网络的训练效率。通过在PIE、AR、Yale 3个典型人脸数据集上的实验表明,本文所提出的方法具有良好的分类性能。最后,本文还研究了卷积核大小及卷积层中卷积核数量对于算法分类率的影响。

    Abstract:

    The principal component analysis network (PCANet) is a kind of deep subspace network based on the simplified architecture of convolutional neural network.To address the issue that PCANet cannot process image samples in real-time during the convolutional kernel extraction process,this article proposes an incremental sequential row-column 2DPCA network (IRC2DPCANet).This method can process training samples on time in the process of filter training,which can improve the efficiency of network training.The experiments on three typical face datasets,which is PIE,AR and Yale,indicate that this method has good classification performance.Finally,the influence of the filter number and filter size on classification rate is also investigated.

    参考文献
    相似文献
    引证文献
引用本文

毕洪旭,王肖锋.基于增量行列二维主成分分析的深度子空间网络[J].光电子激光,2024,35(12):1284~1291

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-31
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-29
  • 出版日期:
文章二维码