基于掩膜迭代ROI改进LBP算法的齿轮缺陷检测方法研究
DOI:
作者:
作者单位:

1.天津科技大学机械工程学院;2.天津科技大学;3.郑州辰维科技股份有限公司

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

天津市自然科学基金项目(19JCZDJC33200);天津市自然科学基金项目(18JCQNJC05200); 天津市教委科研计划项目(2018KJ116); 天津市自然科学基金项目(18JCYBJC88900);


Research on gear defect detection method based on mask iterative ROI improved LBP algorithm
Author:
Affiliation:

1.School of mechanical engineering, Tianjin University of science & technology;2.天津科技大学;3.Zhengzhou Chenwei Technology Co.

Fund Project:

Tianjin Natural Science Foundation Project (19JCZDJC33200); Tianjin Natural Science Foundation Project (18JCQNJC05200); Tianjin Municipal Education Commission Scientific Research Program Project (2018KJ116); Tianjin Natural Science Foundation Project (18JCYBJC88900).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高传统LBP算法提取目标图像特征时的识别率,提出一种基于掩膜迭代ROI改进LBP算法的特征提取方法。使用掩膜迭代ROI的提取方法,减少对干扰信息或者无效区域的处理,缩短缺陷区域提取时间。在局部二值模式(LBP)的基础上根据预设的半径确定所述中心像素点的圆形区域,将邻域采样点之间的灰度值大小关系加入考虑范围,与中心阈值共同作为决定LBP编码情况的影响因子,充分利用邻域点之间所隐藏的方向特征,进一步提高了图像识别的准确率。实验表明,以PASCAL VOC齿轮缺陷数据集中缺陷图像为验证样本,实验所拍摄缺陷图像在SVM识别准确率相较传统LBP算法提升2%,最高识别率99.32%,Manhattan识别准确率相较传统LBP算法提升0.67%,最高识别率98.54%,European识别准确率相较传统LBP算法提升0.44%,最高识别率97.87%。

    Abstract:

    In order to improve the recognition rate of the traditional LBP algorithm when extracting target image features, a feature extraction method based on mask iterative ROI to improve the LBP algorithm is proposed. The extraction method using mask iterative ROI reduces the processing of interference information or invalid regions and shortens the defective region extraction time. Based on the local binary pattern (LBP) to determine the circular area of the said central pixel point according to the preset radius, the gray value size relationship between the neighboring sampling points is added into the consideration, and together with the central threshold, it is used as the influence factor to decide the LBP coding situation, and the directional features hidden between the neighboring points are fully utilized to further improve the accuracy of image recognition, and the experiment showed that using the PASCAL VOC gear defect dataset as the validation sample, the defect images captured in the experiment showed a 2% improvement in SVM recognition accuracy compared to traditional LBP algorithm, with a maximum recognition rate of 99.32%. The Manhattan recognition accuracy improved by 0.67% compared to traditional LBP algorithm, with a maximum recognition rate of 98.54%. The European recognition accuracy improved by 0.44% compared to traditional LBP algorithm, with a maximum recognition rate of 97.87%.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-22
  • 最后修改日期:2023-08-12
  • 录用日期:2023-08-24
  • 在线发布日期:
  • 出版日期: