轻量化夜间行车红外图像目标检测算法
DOI:
作者:
作者单位:

1.三峡大学 电气与新能源学院;2.三峡大学 湖北省建筑质量检测装备工程技术研究中心;3.三峡大学 计算机与信息学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家级大学生创新创业训练计划(202011075013)、国家级大学生创新创业训练计划(202111075019)


Lightweight Night Driving Infrared Image Target Detection Algorithm
Author:
Affiliation:

1.College of Electrical Engineering and New Energy,China Three Gorges University;2.Hubei Province Engineering Technology Research Center for Construction Quality Testing Equipment,China Three Gorges University;3.College of Computer and Information,China Three Gorges University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对红外图像目标检测存在计算量较大,泛化能力弱,检测效果差等问题,提出一种轻量化夜间行车红外图像目标检测算法。算法首先引入Ghost结构作为主干网络,降低模型计算量。然后,在颈部引入BIFPN结构(Bidirectional Feature Pyramid Network)和CA注意力机制(Coordinate attention),提高模型检测效果。最后使用Focal-EIOU和Mish函数作为算法的损失函数和激活函数,提高收敛速度和回归精度。实验结果显示:改进算法较YOLOv3-tiny各方面均有明显提升,与YOLOv5相比,精度提升至88.9%,模型体积压缩24.09%,参数量减小25.07%,计算量减小28.48%,提高了person 和bicycle两个类别的检测精度。实现了检测精度和模型复杂度的平衡。

    Abstract:

    Aiming at the problems of large amount of calculation, weak generalization ability and poor detection effect in infrared image target detection, a light-weight night driving infrared image target detection algorithm is proposed. The algorithm first introduces the Ghost structure as the backbone network to reduce the amount of model calculation. Then, the BIFPN structure and CA attention mechanism are introduced in the neck to improve the model detection effect. Finally, the Focal-EIOU and Mish functions are used as the loss function and activation function of the algorithm to improve the convergence speed and regression accuracy. The experimental results show that the improved algorithm has significantly improved compared with YOLOv3-tiny in all aspects. Compared with YOLOv5, the accuracy has increased to 88.9%, the model volume has been reduced by 24.09%, the number of parameters has been reduced by 25.07%, and the amount of calculation has been reduced by 28.48%, Improve the detection accuracy of the two categories of person and bicycle. A balance between detection accuracy and model complexity is achieved.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-30
  • 最后修改日期:2023-06-30
  • 录用日期:2023-07-12
  • 在线发布日期:
  • 出版日期: