基于改进 CenterNet 的柑橘叶片病害检测
DOI:
作者:
作者单位:

天津理工大学

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

国家自然科学基金项目(61502340);天津市自然科学基金项目(18JCQNJC01000);天津市教委科研计划项目(2018KJ133);天津市复杂系统控制理论与应用重点实验室开放基金项目(TJKL-CATCS-201907)天津理工大学教学基金项目(YB20-05)


Disease detection of citrus leaves based on improved CenterNet
Author:
Affiliation:

Tianjin University of Technology

Fund Project:

National Natural Science Foundation of China(61502340); Natural Science Foundation of Tianjin(18JCQNJC01000); Tianjin Education Commission(2018KJ133); Tianjin Key Laboratory of Control Theory and Application of Complex Systems(TJKL-CATCS-201907);Tianjin University of Technology(YB20-05)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对柑橘叶片病害表现大小不一,解决检测过程中出现的漏检、误检、准确率不高问题,提出了改进 CenterNet 模型。在特征提取网络 RestNet50 的前两个残差层的一系列残差结构中引入特征增强 IASPP 模块,扩大浅层感受野,获取更多小目标叶片病害的细节信息,增强浅层特征的显著性;引入双向加权特征融合模块BiFPN,有效融合特征提取网络浅层和深层叶片病害信息;为提高整体检测效果,引入多尺度注意力机制 MS-CAM。训练后的模型对柑橘病害叶片进行检测,实验结果表明,相比于原模型 CenterNet,所提模型 R 值提高了 5.2%,mAP 提高了 4.1%,AP0.5:0.95 上升了 22.7%,可实现柑橘种植中对叶片小目标、中目标、大目标病害的精准检测。

    Abstract:

    To solve the problems of missing detection, false detection and low accuracy in the detection process, aiming at the different sizes of the disease manifestations of citrus leaves, the model of improved CenterNet is proposed. The feature enhancement IASPP module was introduced into a series of residual structures of the first two residual layers of the feature extraction network RestNet50 to expand the shallow receptive field, obtain more detailed information of small target leaf diseases, and enhance the significance of shallow features. A bidirectional weighted feature fusion BiFPN module was introduced to effectively integrate the shallow and deep leaf disease information of the feature extraction network. In order to improve the overall detection effect, the multi-scale attention mechanism MS-CAM was introduced. The trained model was used to detect citrus disease leaves. The experimental results showed that, compared with the original model CenterNet, the R-value of the proposed model increased by 5.2%, mAP increased by 4.1%, and AP0.5:0.95 increased by 22.7%. It can achieve accurate detection of small target, medium target and large target diseases in citrus leaf planting.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-24
  • 最后修改日期:2023-07-01
  • 录用日期:2023-07-12
  • 在线发布日期:
  • 出版日期: