基于FE-Unet的机场道面裂缝检测
DOI:
CSTR:
作者:
作者单位:

(1.西南石油大学 电气信息学院,四川 成都 610500; 2.成都圭目机器人有限公司,四川 成都 610101; 3.中国民航大学 计算机科学与技术学院,天津 300300)

作者简介:

罗仁泽(1973-),男,博士研究生,教授,主要研究方向为人工智能信号处理.

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2019YFB1310600)资助项目


Crack detection of airport pavement based on FE-Unet
Author:
Affiliation:

(1.College of Electrical and Information Engineering,Southwest Petroleum University,Chengdu,Sichuan 610500, China;2.Chengdu Guimu Robot Co.,Ltd.,Chengdu,Sichuan 610101, China ;3.College of Computer Science and Technology,Civil Aviation University of Chin a,Tianjin 300300, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    机场道面裂缝具有形态复杂多变、走向不连续、 数据噪音多等特征,现有算法模型均未达到令人 满意的结果。为了改善裂缝检测效果,本文提出了一种新的深度学习模型,命名为“FE-Un et”。该模型采 用改进的残差连接方式,在解决多层网络下梯度的回传问题的同时起到细化特征以及整合通 道的信息作 用,提升了各阶段特征的区分度;此外,模型中的通道注意力模块 (channel attention block,CAB) 可以更好地提取判别特征 ,增强预测 的一致性;最后,利用焦点损失(focal loss,FL) 使模型专注于难分类的细小裂缝。实验中,以实际 7 778张机场道面裂缝 图像来训练模型,并在1 701张图像上进行验证 。在与经典的全卷积神经网络(fully convolutional network, FCN)、DeepLab v3和Unet对比实验中,FE-Unet 对裂缝、灌缝和板缝的检测性能均优于其他模型。其中,FE-Unet对裂缝检测的精度、召回 率、F1值分别达到了80.31%、 82.72%和81.49%。

    Abstract:

    Airport pavement cracks are characterized by complex morphology,disco ntinuous trend and lots of data noise,and the existing algorithm models have not achieved sati sfactory results.In order to improve the crack detection effect,this paper proposes a new deep lear ning model named "FE-Unet".The model adopts the refine residual block,which not only solves th e problem of gradient transmission in multi-layer network,but also refines the features and integrat es the information of channels,and improves the distinguishing degree of features in each stage.In a ddition,the channel attention block (CAB) in the model can better extract discriminant features and enhan ce the consistency of prediction.Finally,focal loss (FL) is used to make the model focus on the fine crac ks that are difficult to classify.In the experiment,the model is trained with 7 778 ai rport pavement crack images and verified on 1 701 images.In comparison with classical fully convolutional network (FCN),Deep Lab v3 and Unet,FE-Unet has better detection performance for cracks,repair and joint than other models.Amo ng them,the precision,recall rate and F1 value of FE-Unet for crack detection reached 80.3 1%,82.72% and 81.49%.

    参考文献
    相似文献
    引证文献
引用本文

邓治林,罗仁泽,费越,李海丰.基于FE-Unet的机场道面裂缝检测[J].光电子激光,2023,34(1):34~42

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-03-06
  • 最后修改日期:2022-04-20
  • 录用日期:
  • 在线发布日期: 2023-01-16
  • 出版日期:
文章二维码