改进YOLOv5的车牌检测算法在林区中的应用
DOI:
CSTR:
作者:
作者单位:

(西南林业大学 机械与交通学院,云南 昆明 650224)

作者简介:

杨 洁 (1973-),女,工学博士,副教授,硕士 生导师,主要从事检测技术与自动化装置、视觉图像处理等方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(51968065)和云南省教育厅科学研究基金项目(111722038)资助项目


Application of improved YOLOv5 license plate detection algorithm in forest regio n
Author:
Affiliation:

(College of Mechanics and Transportation,Southwest Forestry University,Kunmi ng,Yunnan 650224, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对林区环境中现有的交通监控系统目标检测算 法在雾、雨、雪等恶劣天气条件下车牌定位困难、 精度低和检测速度慢等问题,提出了一种新的车牌检测方法。该方法以YOLOv5(you only look once v5)为基础模型 ,采用K-means++的方法对实例标签信息进行聚类分析获取新的初始化锚框尺寸,在特征提 取网络中融入CBAM(convolutional block attention module) 注意力机制提取到检测目标更多的特征信息,选取了CIoU作为损失函数提高检测框定位精 度。在预处理 方面,模拟摄像头在采集图像时可能产生的干扰,使用OpenCV-Python编写脚本对图像进 行处理,增加算 法在林区复杂环境下检测的鲁棒性。实验分析表明,该方法的均值平均精度@0.5(mean average precision@0.5, mAP@0.5) 达99.5%、均 值平均精度@0.5(mAP@0.5) 达86.7%、检测速度达128帧/s、模型大小仅14 M,与YOLOv5以 及其他主流目标检测算法相比有更好的准确性、实时性和广泛可部署性。

    Abstract:

    For the issues such as license plate positioning difficulties,low acc uracy,and slow detection speed of the target detection algorithm of current traffic monitoring system in the forest environment in fog,rain,snow and other adverse weather conditions,this paper proposed a new license plate detection method,which used you only look once v5 (YOLOv5) as the base model.Firstly,this paper experimented wi th the K-means++ method and made cluster analysis of the label information of the instances to ob tain the new anchor frame sizes.Next,the convolutional block attention module (CBAM) attention mechanism was incorporated into the featur e extraction network to extract more feature information of the detection target.Finally,CIoU was c hosen as a loss function to improve the detection frame localisation accuracy.In terms of the pre-proce ssing,the possible interference generated by the camera during image acquisition was simulated and the images were scripted using OpenCV-Python to increase the robustness of the algorithm for de tection in complex environments in forest areas.As shown by the experimental analysis results,the mean average precision@0.5(mAP@0.5) and the mean average precision@0.5∶0.95(mAP@0.5∶0.95) of the improved model reached 99.5% and 86.7%,respectively.In addition,the detection speed reached 128 fps,but the model size was only 14 M.Compared with YOLOv5 and o ther leading target detection algorithms,this method had improved accuracy,real-time performance and broad deployability.

    参考文献
    相似文献
    引证文献
引用本文

朱文超,杨洁,卢成煜,何超.改进YOLOv5的车牌检测算法在林区中的应用[J].光电子激光,2022,33(12):1271~1279

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-03-11
  • 最后修改日期:2022-04-12
  • 录用日期:
  • 在线发布日期: 2022-12-13
  • 出版日期:
文章二维码