基于改进U-Net的SPECT骨显像病灶分割研究
DOI:
CSTR:
作者:
作者单位:

(1.西南石油大学 电气信息学院,四川 成都 610500; 2.宜宾市第二人民医院 核医学科,四川 宜宾 644000)

作者简介:

余 泓(1997-),男,硕士,从事医学影像识 别、深度学习方向的研究.

通讯作者:

中图分类号:

基金项目:

四川省科技计划项目(2019CXRC0027)资助项目


SPECT bone imaging lesion segmentation based on improved U-Net
Author:
Affiliation:

(1.College of Electrical Engineering and Information,Southwest Petroleum Univer sity,Chengdu,Sichuan 610500, China;2.Department of Nuclear Medicine,The No.2 People′s Hospital of Yibin,Yibin,Sichuan 6 44000, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在核医学中,单光子发射计算机断层(single-photon emission computed tomograpy,SPECT)骨显像是辅助医师诊断癌症 的重要手段。针对骨显像图像信噪 比低、边界模糊、病灶小难以提取和人工勾画病灶耗时等问题,提出一种基于改进U-Net 网络的骨显像病灶自动分割算法。该算法在U-Net的原卷积块基础上,采用了多尺度密集连 接(multi-scale dense connection,MDC) 的方式来提高对小病灶特征的提取能力,同时解决了网络加深后出现的梯度消失问题。其 次,为提取病灶的细节特征,在密集连接和跳跃连接处引入了注意力机制结构。最后,针对 使用小样本数据集,模型难以收敛的问题,采用迁移学习的方法,优化了模型的初始参数, 提升模型的泛化能力和分割效率。此外,为了降低计算量、进一步提高分割效果,对数据集 进行了裁剪和去噪。同时,将处理后的图像采用旋转、镜像等方法进行了数据扩充。实验结 果表明,改进的U-Net的识别精确率(precision)、平均交并比(mean intersection-over-union,mIoU) 分别能达到0.735 、0.467 ,效果优于目 前主流的分割算法,具有一定实际应用价值。

    Abstract:

    In nuclear medicine,single-photon emission computed tomography (SPECT) bone imaging is an important means to assist physicians i n diagnosing diseases.Aiming at the problems of low signal-to-noise ratio,blurred boundar ies,small lesions, and time-consuming manual lesion delineation in bone imaging images,an automat ic segmentation algorithm for bone imaging lesions based on improved U-Net network was proposed. Based on the original convolution block of U-Net,the algorithm adopts a multi -scale dense connection (MDC) method to improve the extraction ability of small lesion features,an d at the same time solves the problem of gradient disappearance after the network is deepened.Seco nd,to extract detailed features of lesions,an attention mechanism structure is introduced at dense and skip connections.Finally,in view of the problem that the model is difficult to conv erge when using a small sample dataset,the transfer learning method is used to optimize the init ial parameters of the model and improve the generalization ability and segmentation efficiency of the model.In addition,in order to reduce the amount of computation and further improve the s egmentation effect,the dataset is cropped and denoised.At the same time,the processed ima ges are augmented by rotation,mirroring and other methods.The experimental results show that the improved U-Net′s recognition precision and mean intersection-over-union ratio (mIoU) can reach 0.735 2 and 0.467 3,respectively, which are better than the current mainstream segmentation algorithms,and have c ertain practical application value.

    参考文献
    相似文献
    引证文献
引用本文

余泓,罗仁泽,陈春梦,罗任权,李华督.基于改进U-Net的SPECT骨显像病灶分割研究[J].光电子激光,2022,33(10):1110~1120

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-25
  • 最后修改日期:2022-03-10
  • 录用日期:
  • 在线发布日期: 2022-10-18
  • 出版日期:
文章二维码