基于相对动态误差的轴承故障特征参数提取
DOI:
CSTR:
作者:
作者单位:

(1.昆明理工大学 信息工程与自动化学院,云南 昆明 650500; 2.昆明理工大学 民航与航空学院,云南 昆明 650500)

作者简介:

钱俊兵(1976-),男,博士,副教授,硕士生 导师,主要从事人工智能及智能量测方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(41364002,61861023)和浅水水域水下探测机器人开发(6493-2015001 6)资助项目


Extraction of bearing fault characteristic parameters based on relative dynamic error
Author:
Affiliation:

(1.Faculty of Information Engineering and Automation,Kunming University of Sci ence and Technology,Kunming,Yunnan 650500, China;2.Faculty of Civil Aviation and Aeronautics,Kunming University of Science and Technology,Kunming,Yunnan 650500,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    轴承故障信号中存在有关故障的异常信息,对维 护机械安全有着重大意义。轴承故障信号经小波包分解之后,故障的异 常信息主要体现在分解频段的动态误差上,而各个频段的动态误差一般由标准差能量熵和标 准差均值来描述。为了凸显轴承故 障的区分特征,通过轴承故障尺寸去刻度动态误差,利用相应的轴承故障特征参数提取相对 动态误差,是有效的处理方法。基 于此思路,本文针对小波包分解后不同频段分量的标准差,计算其能量熵以及均值。然后把 对应频段的标准差能量熵和标准差 均值相加作为特征参数,在同一尺度下定性分析。同时把轴承信号不同频段的特征参数相加 后的数值与轴承故障尺寸相比,通 过产生的相对动态误差进行定量分析,最终实现对轴承故障的有效区分。实验结果表明,本 文所提方法对轴承故障有很好的区分效果。

    Abstract:

    There is abnormal information about the fault in the bearing fault sig nal,which is significant to maintain mechanical safety.After the bearing fault signal is decomposed by wavelet packe t,the abnormal information of the fault is mainly reflected in the dynamic error of the decomposed frequency band.The dyna mic error of each frequency band is generally described by the energy entropy of standard deviation and the mean val ue of standard deviation.In order to highlight the distinguishing characteristics of bearing faults,the dynamic erro r is demarcated by the bearing fault size.It is an effective method to extract the relative dynamic error by using the correspon ding bearing fault characteristic parameters. Based on this idea,this paper calculates the energy entropy and mean through th e standard deviation of different frequency band components after wavelet packet decomposition.Then,the energy entropy of the standard deviation and the mean value of the standard deviation of the corresponding frequency band are added as the characteristic parameters for qualitative analysis at the same scale.At the same time,the value obtained by adding the characteristic parameters of the different frequency bands of the bearing signal is compared with the bearing fau lt size.Through the quantitative analysis of the relative dynamic error,the effective distinction of bearing faults is fi nally realized.The experimental results show that the method proposed in this paper has a good effect on distinguishing beari ng faults.

    参考文献
    相似文献
    引证文献
引用本文

郑志清,全海燕,钱俊兵.基于相对动态误差的轴承故障特征参数提取[J].光电子激光,2022,33(10):1055~1066

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-11
  • 最后修改日期:2022-03-02
  • 录用日期:
  • 在线发布日期: 2022-10-18
  • 出版日期:
文章二维码