基于多层次特征融合的口腔粘膜性疾病识别方法
DOI:
CSTR:
作者:
作者单位:

(1.西安工业大学 光电工程学院,陕西 西安 710021; 2.空军军医大学第三附属医院 口腔粘膜科,陕西 西安 710032; 3.军事口腔医学国家重点实验室/国家口腔疾病临床医学研究中心/陕西省口腔疾病临床医学研究中心,陕西 西安 710032)

作者简介:

刘 青 (1968-),男,博士,教授,硕士生导 师,主要从事医学图像处理、口腔粘膜疾病诊断方面的研究.

通讯作者:

中图分类号:

基金项目:

陕西省重点实验室项目(17JS052)和军事口腔医学国家重点实验室自主课题(2019ZA07) 资助项目


Recognition of oral mucosal diseases based on multi-level feature fusion
Author:
Affiliation:

(1.College of Optoelectronic Engineering,Xi′an Technological University,Xi′an,Shaanxi 710021, China;2.Department of Oral Mucosa,the Third Affiliated Hospital of Air Force Military Medical University,Xi′an,Shaanxi 710032 , China;3.State Key Laboratory of Military Stomatology/National Stomatological Clinical Research Center/Shaanxi Stomato logical Clinical Research Center,Xi′an,Shaanxi 710032, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    口腔粘膜性疾病的识别主要依靠医生肉眼观察并 进行主观判断,该方法导致疾病识别的准确率低、医生的工作量 大。针对以上问题提出一种基于多层次特征融合的口腔粘膜性疾病识别方法。对口腔疾病图 像提取深层次特征和浅层次 特征共两种,使用EfficientNet模型做深层特征的提取,使用HSV、方向梯度直方图(histo gram of oriented gradient, HOG)和灰度共生矩阵(gray-level co-occurrence matrix,GLCM)分别提取口腔疾病的 颜色、形状以及纹理的浅层特 征,将特征融合后利用随机森林(random forest,RF) 算法进行特征选择,选取特征重要性更大的特征,降低特征 的维度。最后结合多种机器 学习分类器进行分类识别。使用收集到的口腔粘膜疾病数据集进行实验验证,实验结果表明, 该方法能达到准确率(accuracy,Acc)92.89%、灵敏度(sensitivity,Sen)89.91%、特异性(specificity,Spe)96. 06%以及AUC(area under the curve)98.09%,有 效地解决识别中误判多、准确率低等问题。

    Abstract:

    The recognition of oral mucosal diseases mainly depends on doctors′ v isual observation and subjective judgment.This method leads to low accuracy of disease recognition and heavy wor kload of doctors.To solve the above problems,an oral mucosal disease recognition method based on multi-level feature fusion is proposed.There are two kinds of deep-level features and shallow features extracted from oral d isease images.The efficientNet model is used to extract the deep features.HSV,histogram of oriented gradiant (HOG) and gray level co-occurrence mat rix (GLCM) are used to extract the shallow features of color,shape and texture of oral diseases respectively.Afte r feature fusion,the random forest (RF) algorithm is used to select the features with greater feature importance,reducing the dimension of the feature.Finally, a variety of machine learning classifiers are combined for classification and re cognition.The datasets of oral mucoal diseases collected are used for experiment verification. The experimental results show that the method can achieve the accuracy (Acc) of 92.89%,sensitivity (Sen) of 89.91%, specificity (Spe) of 96.06% and area under the curve (AUC) of 98.09%.It effectively solves the problems of many misjudgments and low accuracy in recognition.

    参考文献
    相似文献
    引证文献
引用本文

张道奥,高明,刘青,王舒研,汪苑苑.基于多层次特征融合的口腔粘膜性疾病识别方法[J].光电子激光,2022,33(9):968~976

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-24
  • 最后修改日期:2021-01-27
  • 录用日期:
  • 在线发布日期: 2022-10-18
  • 出版日期:
文章二维码