跟踪状态自适应的判别式行人单目标跟踪算法研究
DOI:
CSTR:
作者:
作者单位:

(天津理工大学 计算机视觉与系统教育部重点实验室和天津市智能计算及软件新技术重点实验室,天津 300384)

作者简介:

薛彦兵(1979-),男,硕士,副研究员,硕士生导师,主要 从事计算机视觉、机器学习方面的研究.

通讯作者:

中图分类号:

基金项目:

天津市自然科学基金(18JCYBJC85500)、天津市人工智 能专项(18ZXZNGX00150)和天津市科学技术局技术创新引导专 项(21YDTPJC00250)资助项目


Research on discriminative pedestrian single target tracking algorithm with adap tive tracking state
Author:
Affiliation:

(Key Laboratory of Computer Vision and System,Ministry of Education of China,T ianjin Key Laboratory of Intelligence Computing and Novel Software Technology,T ianjin University of Technology,Tianjin 300384, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文针对在行人跟踪过程中遇到的背景相似物干扰、行人之间的相互遮挡和背景杂乱 等导致跟踪状态不稳定的问题,基于DIMP(learning discriminative model prediction fo r tracking)跟踪算法,提出了一种跟踪状态自适应的判别式单目标行人跟踪算法。跟踪过 程中由分类滤波器和搜索区域进行卷积操作得到响应图,通过响应图判断跟踪状态,跟踪状 态分为弱响应状态、多峰强响应状态、单峰强响应状态。针对多峰强响应状态下的干扰物影响 ,提出在线更新策略,利用激励和抑制损失更新分类滤波器,提高分类滤波器的判别能力。 针对多峰强响应和弱响应状态下目标预测不准确的问题,通过偏移量和增添候选框修正目标 位置,提高跟踪精度。实验验证提出的算法在行人视频序列上跟踪结果,精度达到了 0.978, 成功率达到了0.740,在NVIDIA GTX 1650显卡 下有30 fps的实时速度。

    Abstract:

    Based on tracking algorithm of learning discriminative m odel prediction for tracking (DIMP), a discriminative single target pedestrian tracking algorithm with a daptive tracking state is proposed to address the problems of unstable tracking state due to background similarities interference,mutual occlusion between pedestrians and background cluter encountered in the pedestrian tracking process .The response map is obtained by the convolut ion operation of the classification filter and the search region in the tracking process,and the tracking state is divided into weak response state,multi-pea k strong response state,and single-peak strong response state by the response m a p.For the influence of disturbances in the multi-peak strong response state,a n online update strategy is proposed to update the classification filter by using the excitation and suppression losses to improve the discriminative ability o f the classification filter.For the problem of inaccurate target prediction in m ulti-peak strong response and weak response states,the target position is correc t ed by offset and adding candidate frames to improve the tracking accuracy. The p roposed algorithm is experimentally verified, which achieves precision of 0.978 and a success rate of 0.740 on pedestrian video sequences with a real-time speed of 30 fps under NVIDIA GTX 1650.

    参考文献
    相似文献
    引证文献
引用本文

丁明远,蔡靖,周冕,薛彦兵,温显斌.跟踪状态自适应的判别式行人单目标跟踪算法研究[J].光电子激光,2022,33(9):940~947

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-07
  • 最后修改日期:2022-01-24
  • 录用日期:
  • 在线发布日期: 2022-10-18
  • 出版日期:
文章二维码