基于多任务学习的脑肿瘤MRI分割算法
DOI:
作者:
作者单位:

1.广东工业大学;2.汕头大学

作者简介:

通讯作者:

中图分类号:

TP399

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


MRI Segmentation of Brain Tumor Based on the Muti-task learning
Author:
Affiliation:

1.Guangdong University of Technology;2.Shantou University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对脑肿瘤MRI (magnetic resonance imaging)分割中样本缺少、类不平衡、小区域分割精度低等问题,本文提出了基于3D No-New U-Net的多尺度多任务深度学习算法TDDU-Net。首先,采用了一个编码器和三个不完全相同解码器的结构;其次,采用逆瓶颈结构设计的ConvXt模块作为解码器的前置处理,克服在部分核心区域解码时高层语义未被充分利用的不足;再次,在最底层编码器和解码器连接处增加广义特征处理模块InConvXt,保证全局特征的准确性,增强网络的稳定性;最后,在保证准确率的情况下,使用深度可分离卷积,减少网络的参数计算量。实验表明,预测分割结果的肿瘤全区域、肿瘤核心区域、增强肿瘤区域Dice相似系数在BraTS18数据集中分别达到了0.907,0.847,0.807。本文方法较其他方法表现出色,能准确分割出较小的肿瘤区域。

    Abstract:

    In order to solve nonnegligible problems in brain tumor MRI segmentation, such as few samples, class imbalance and low accuracy of small districts, this essay proposes a new multi-scale and multitask deep-learning algorithm called TDDU-Net based on 3D No-New U-Net. Firstly, this paper applied the structure with an encoder and three different decoders to the network. Next, the ConvXt module is a custom-designed pre-processor set in front of the original decoders in order to overcome the underutilization of high-level semantics in some core region. Then, InConvXt is a generalized feature processing module set at the bottom layer between the encoder and decoder to ensure the accuracy of the generalized features and enhance the stability of the network. Finally, the deepwise convolution is used to reduce the amount of the network parameter at the appropriate location while ensuring accuracy. The experiments show that the dice similarity coefficients of the predicted segmentation in the BraTS18 dataset reaching 0.907, 0.847, 0.807 in the whole tumor region, the core tumor region and the enhanced tumor region. The method performs better and makes fewer mistakes than others, which is helpful in segmenting the smaller tumor area in MRI.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-21
  • 最后修改日期:2023-03-22
  • 录用日期:2023-03-30
  • 在线发布日期:
  • 出版日期: