基于改进CenterNet的椎间盘图像检测算法研究
DOI:
CSTR:
作者:
作者单位:

(安徽理工大学 计算机科学与工程学院,安徽 淮南 232001)

作者简介:

汪 婷(1998-),女,硕士研究生,主要从事目标检测方面 的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61703005)和安徽省重点研发计划国际科技合作专项(202004b110200 29)资助项目


Research on intervertebral disc image detection algorithm based on improved Cent erNet
Author:
Affiliation:

(School of Computer Science and Engineering,Anhui University of Science and Te chnology,Huainan,Anhui 232001, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对椎间盘图像灰度值较高及成像图具有不均匀性 导致的空间信息难捕捉、特征缺乏语义信息等问题,以磁共振腰椎T2矢状位的椎间盘识别为 目标,本文提出一种基于改进CenterNet模型的椎间盘检 测算法TCA_CenterNet (top coordinate attention CenterNet),首先在主干特征提取网络顶层(Top)加入坐标注意力机制(coordinat e attention,CA), 加强网络对椎间盘的关注度,增强模型对目标位置的敏感性;其次采用深浅层特征融合,增 强CenterNet 提取有效特征的能力,并通过数据增强提高模型的泛化性能。实验结果表明,模型最终的平 均精度均值 (mean average precision,mAP)达到81.15%,平均帧率为1 4.2 frame/s,与其他对比算法相比,该改进算法具有更好的准确性与鲁棒性 。

    Abstract:

    Aiming at the problems of high gray value of intervertebral disc image and uneve n imaging image,it is difficult to capture spatial information and lack of semant ic information.Taking the recognition of lumbar intervertebral disc in T2 sagittal position by magnetic resonance as the object,this paper proposes an intervertebral disc detection algorithm,TCA_CenterNet (top coordinate attention CenterNet),based on improved CenterNet model,firstly,the coordinate attention (CA) mechanism is adde d to the top of the backbone feature extraction network to strengthen the network′s attentio n to the intervertebral disc and enhance the sensitivity of the model to the target posit ion;Secondly,deep and shallow feature fusion is used to enhance the ability of CenterNet to extrac t effective features,and the generalization performance of the model is improved through da ta enhancement. The experimental results show that the final mean average precision (mAP) of the model is 81.15% and the average frame rate is 14.2 frame/s.Compared with other comparison algorithms ,the improved algorithm has better accuracy and robustness.

    参考文献
    相似文献
    引证文献
引用本文

周华平,汪婷,孙克雷.基于改进CenterNet的椎间盘图像检测算法研究[J].光电子激光,2022,33(7):760~769

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-14
  • 最后修改日期:2022-01-20
  • 录用日期:
  • 在线发布日期: 2022-08-17
  • 出版日期:
文章二维码