基于门控卷积神经网络的图像超分辨重建算法
DOI:
CSTR:
作者:
作者单位:

(1.陕西师范大学 现代教学技术教育部重点实验室,陕西 西安 710062; 2.陕西师范大学 计算机科学学院,陕西 西安 710119)

作者简介:

王文安 (1995-),男,硕士,主要从事超分辨率重 建,图像增强方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61672333)资助项目


Gated convolutional neural network for image super-resolutionreconstruction algorithm
Author:
Affiliation:

(1.Key Laboratory of Modern Teaching Technology,Ministry of Education,Shaanxi Normal University,Xi′an,Shaanxi 710 062, China;2.School of Computer Science,Shaanxi Normal University,Xi′an,Shaanxi 710119, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,卷积神经网络被广泛应用于图像超分辨 率领域。针对基于卷积神经网络的超 分辨率算法存在图像特征提取不充分,参数量大和训练难度大等问题,本文提出了一种基于 门控卷积神经网络(gated convolutional neural network,GCNN) 的轻量级图像超分辨率重建算法。首先,通过卷积操作对原始低分辨率图 像进行浅层特征提取。之后,通过门控残差块(gated residual block,GRB) 和长短残差连接充分提取图像特征,其高效的 结构也能加速网络训练过程。GRB中的门控单元(gated unit,GU) 使用区域自注意力机制提取输入特征 图中的每个特征点权值,紧接着将门控权值与输入特征逐元素相乘作为GU输出。最后 ,使用亚像素卷积和卷积模块重建出高分辨率图像。在Set14、BSD100、Urban100和Manga10 9数据集上进行实验,并和经典方法进行对比,本文算法有更高的峰值信噪比(peak signal-to-noise ratio,PSNR) 和结构相似性(structural similarity,SSIM) ,重建出的图像有更清晰的轮廓边缘和细节信息。

    Abstract:

    In recent years,convolutional neural networks have been widely used in the field of image super-resolution.The super-resolution algorithm based on co nvolutional neural network has some problems,such as insufficient feature extra ction of image,large number of parameters and difficult training.Therefore,this paper proposes a lightweight image super-resolution reconstruction algorithm based on gated convolutional neural network (GCNN).Firstly,the shallow feature extraction of t he original low-resolution image is carried out by convolution operation.Then, the gated residual blocks (GRB) and long and short residual connections fully extract image feat ures,and its high-efficient structure can also accelerate the network training proce ss.The gated unit (GU) in the GRB uses the regional self-attention mechanism to extract the weight of each feature point in the input feature map. And then it multiplies the gate weight by the input feature element by element a s the output of the GU.Finally,high-resolution images are reconstruct e d using sub-pixel convolution and convolution module.Experiments are conducted on Set14,BSD100,Urban100 and Manga109 datasets.Compared with the classical me thods,not only does the algorithm in this paper have higher peak signal-to-no is e ratio and structural similarity,but also the reconstructed image has clearer contour edges and details.

    参考文献
    相似文献
    引证文献
引用本文

王文安,梁新刚,刘侍刚.基于门控卷积神经网络的图像超分辨重建算法[J].光电子激光,2022,33(6):637~642

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-30
  • 最后修改日期:2021-11-27
  • 录用日期:
  • 在线发布日期: 2022-08-17
  • 出版日期:
文章二维码