基于多尺度特征选择性融合的遥感图像检测算法
DOI:
CSTR:
作者:
作者单位:

(1.安徽理工大学 计算机科学与工程学院,安徽 淮南 232001; 2.皖西学院,安徽 六安 237012; 3.安徽理工大学 电气与信息工程学院,安徽 淮南 232001)

作者简介:

黄友锐 (1971-),男,博士,教授,博士生导师 ,研究方向为智能控制和矿山物联网.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61772033)和安徽省科技重大专项计划项目(1603091012)资助项目


Remote sensing image detection algorithm based on selective fusion of multi-scale features
Author:
Affiliation:

(1.School of Computer Science and Engineering,Anhui University of Science and Technology, Huainan,Anhui 232001, China;2.Wanxi University,Lu′an,Anhui 237012, China;3. School of Electrical and Information Engineering,Anhui University of Science and Technology,Huainan,Anhui 232001, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    遥感图像的检测在监察自然环境、军事、国土安 全等方面具有极其广阔的应用前景,而遥感图像 具有背景复杂、目标面积小、特征提取困难等缺点,进行检测时容易产生小目标漏检问题。 本文提出一 种基于多尺度特征选择性融合的遥感图像检测算法。所提算法采用改进的Resnet50作为主 干网络,将 Resnet50第一个卷积替换成动态卷积,并将其ConvBlock模块中的卷积替换成金字塔卷积 ,提高特征提 取能力。同时,为了避免遗漏底层信息,在动态卷积层后加入所提有效空间通道注意力机制 模块。最后, 选取基于上下文信息的不同尺度特征进行融合,提高了模型对目标物体的定位能力。实验结 果表明,本 文算法在保证速度的同时提高了对遥感图像的检测精度,在遥感图像公开数据集RSOD和NWP UVHR-10上平均精度均值(mean average precision,mAP)分别达到91.88%和90.23%,检 测速度达到33 FPS。

    Abstract:

    The detection of remote sensing images has a wide range of application s in monitoring the natural environment,military,homeland security and so on,while remote sensing images have the disadvantages of complex background,small target area and difficulty in charact er extraction.In this paper,a remote sensing image detection algorithm based on selective fusion of m ulti-scale features is proposed.The proposed algorithm uses the improved Resnet50 as the backbone netw ork,replaces the first convolution of the Resnet50 with dynamic convolution,and replaces the con volution in the ConvBlock module with pyramid convolution to improve feature extraction capabili ty.At the same time,in order to avoid missing the underlying information,the proposed effecti ve spatial channel attention mechanism module is added after the dynamic convolution layer.Finally ,the different scale features based on context information are selected to fuse and improve the model ′s ability to locate the target object.The experimental results show that the algorithm improves the detection accuracy of remote sensing images while ensuring speed,and the mean average precision (mAP) re aches 91.88% and 90.23%, respectively,on the remote sensing image disclosure data set RSOD and NWPUVHR- 10,and thedetection speed reaches 33 FPS.

    参考文献
    相似文献
    引证文献
引用本文

方明帅,黄友锐,韩涛.基于多尺度特征选择性融合的遥感图像检测算法[J].光电子激光,2022,33(6):629~636

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-16
  • 最后修改日期:2022-12-15
  • 录用日期:
  • 在线发布日期: 2022-08-17
  • 出版日期:
文章二维码