基于改进YOLOv4的遥感图像目标检测
DOI:
CSTR:
作者:
作者单位:

(内蒙古科技大学 信息工程学院,内蒙古 包头 014010)

作者简介:

任 彦(1977-),女,教授,硕士生导师,主 要主要研究方向为遥感图像处理.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62063027)、内蒙古自治区科技计划项目(2020GG0048)、内蒙古自然基金 (2019MS06002)和内蒙古自治区高等学校青年科技人才发展计划项目(NJYT22057)资助项目


Remote sensing image target detection based on improved YOLOv4
Author:
Affiliation:

(School of Information Eng ineering,Inner Mongolia University of Science and Technology, Baotou,Inner 014010,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对遥感图像在复杂背景下因特征提取和表达能力不足而存在漏检和检测效果不佳的 问题,提出一种优化 特征提取网络的YOLOv4算法模型。该改进模型引入了一种新的Dense-PANet结构以获取更高 的分辨率特征, 并通过在特征提取网络中嵌入注意力机制以适应遥感图像因视野范围大而导致复杂背景下小 目标漏检和检测效 果不佳的问题。为了证明本文所提方法的有效性,针对DIOR遥感数据源进行了对比实验, 结果表明,本文算 法平均准确率(mean average precision,mAP)为86.55%,相比原 算法提高了2.5 2%,较YOLOv3、RetinaNet提高了6.58%、 14.09%,验证了所改进算法的有效性。

    Abstract:

    Aiming at the problem of missed detection and poor detection effect of remote sensing images due to insufficient feature extraction and expression capabilities in complex backgr ounds,a YOLOv4 algorithm model that optimizes feature extraction network is proposed.The improved model introduces a new Dense- PANet structure to obtain higher resolution features,and embeds the attention m echanism in the feature extraction network to adapt to remote sensing images due to the large field of v iew,which leads to the missed detection of small targets in complex backgrounds and the problem of poor detect ion results.In order to prove the effectiveness of the method proposed in this paper,a comparative experiment was conducted on DIOR remote sensing data sources.The results show that the average accuracy (mean average precision,mAP) of the a lgorithm in this paper is 86.55%,which is an increase of 2.52% compared to the original algorithm. YOLOv3 and RetinaNet increased by 6.58% and 14.09%,which verifying the effectiveness of the improved algorithm.

    参考文献
    相似文献
    引证文献
引用本文

叶玉伟,任彦,高晓文,王佳鑫.基于改进YOLOv4的遥感图像目标检测[J].光电子激光,2022,33(6):607~613

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-22
  • 最后修改日期:2021-11-19
  • 录用日期:
  • 在线发布日期: 2022-08-17
  • 出版日期:
文章二维码