基于残差与注意力机制的原棉杂质检测
DOI:
CSTR:
作者:
作者单位:

(西安工程大学 电子信息学院,陕西 西安 710048)

作者简介:

徐健(1963-),男,教授,硕士生导师,主要从事为机器 学习,目标检测、模式识别等方面的研究.

通讯作者:

中图分类号:

基金项目:

陕西省科技厅项目(2018GY-173)和西安市科技局项目(GXYD7.5)资助项目 (西安工程大学 电子信息学院,陕西 西安 710048)


Detection of raw cotton impurities based on residual and attention mechanism
Author:
Affiliation:

(School of Electronices and Information, Xi′an Polytechnic University, Xi′an, Sha anxi 710048, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对原棉杂质检测准确率不高的问题,以新疆棉花 为研究对象,提出基于残差与注意力机制的原棉杂质检测算法。该算法为2阶 段算法,准确率较高。首先,采集原棉杂质图象后对图像进行标注,再进行数据增广,可以 避免训练过程中的过拟合现象,接着在原框架引入视觉注意力机制,通 过改进算法结构来提高原棉杂质检测的准确率。其次,通过分析对比几种不同网络对原棉杂 质检测的准确 度,选取ResNet50为特征提取网络,该网络提高了算法的复杂特征提取能力。最后,采用R oI Align来减 少量化误差,从而提高检测原棉杂质的准确性。实验结果表明,改进的算法虽然略微增多检 测时间,但其 整体检测准确率明显优于原算法,整体识别的准确率可达到 94.84%, 较改进前Faster R-CNN(faster region-based convolutional neural network)的识别率提 高了5.58%。同时通过对比不同网络模型,结果显示改进后的Faster R-CNN对原棉杂质检测的效果更好。

    Abstract:

    Aiming at the problem of low accuracy of impurity detection in raw cotton,an imp roved algorithm based on residual and attention mechanism for detecting raw cotton impurity in Xinjiang cotton is proposed.The algorithm has high accuracy and is a two-stage algorithm.Firstly,the impurity images of raw cotton were collected and labeled,a nd then the data were enlarged to avoid the overfitting phenomenon in the training process.Then,visual attention m echanism is introduced into the original framework,and the accuracy of impurity detection of raw cotton is imp roved by advancing the algorithm structure.Secondly,by analyzing and comparing the accuracy of several different networks in detecting raw cotton impurities,ResNet50was selected as the feature extraction network,which improve d the complex feature extraction ability of the algorithm.Finally,ROI Align is used to reduce quantization errors and improve the accuracy of the detection of raw cotton impurities.Experimental results show that although the i mproved algorithm slightly increases the detection time,its overall detection accuracy is significantly better than the original algorithm,and the overall recognition accuracy can reach about 94.84%,which is 5.58% higher than the reco gnition rate of the faster region-based convolutional neural network (Faster R-CNN) before the improvement.Meanwhile,by comparing different network models,the resul ts show that the improved Faster R-CNN has a better effect on the detection of raw cotton impurities.

    参考文献
    相似文献
    引证文献
引用本文

徐健,韩琳,刘秀平,王圣鹏,陆珍,胡道杰.基于残差与注意力机制的原棉杂质检测[J].光电子激光,2022,33(4):421~428

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-15
  • 出版日期:
文章二维码