基于无人机高光谱荒漠草原鼠洞识别方法研究
DOI:
CSTR:
作者:
作者单位:

(内蒙古农业大学 机电工程学院, 内蒙古 呼和浩特 010018)

作者简介:

杜健民(1960-),男,博士,教授,博士生导师,主要从事 环境测控技术与装备智能化方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(31660137)资助项目 (内蒙古农业大学机电工程学院, 内蒙古呼和浩特 010018)


Research on recognition method of desert steppe rat hole based on unmanned aerial vehicle hyperspectral
Author:
Affiliation:

(College of Mechanical and Electrical Engineering,Inner Mongolia Agricultural U niversity, Hohhot, Inner Mongolia 010018, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年,我国草原鼠害有逐年上升的趋势。草原鼠害不仅加剧了水土流失与荒漠化进 程,还会 引发鼠疫。鼠洞洞口数是我国进行鼠害监测与等级评价的重要指标,目前采用的人工勘察方 法存在着 精度低、费时费力、调查成本较高、只适用小面积调查等诸多问题,难以满足大面积实时监 测和研究 的要求。进行实时、动态的鼠洞数量分布监测,是有效地制定灭鼠措施和预防鼠疫发生的重要手 段。本研 究利用无人机携带高光谱仪对荒漠化草原进行数据采集,提出鼠洞指数(rat hole index, RHI)对草 原鼠洞进行识别。研究结果表明,利用RHI识别草原鼠洞,总体精度可达97%,Kappa系数可达0.93, 该模型与归一化植被指数(normalized difference vegetation index,NDVI)、土壤调节植被指数(soil-adjusted vegetation index,SAVI)、比值植被指数(ratio vegetation index,RVI)等3种植被指数模型相比具有较高的识别精度。RHI的提出,有 效地提高 草原鼠洞的识别精度和效率,为鼠害防治以及草原退化监测和研究提供有效方法。

    Abstract:

    In recent years,the rodent damage has been increasing on our country′s grassland year by year. Grassland rodent damage not only aggravates the process of soil erosion and dese rtification,but also causes plague.The number of rat holes is an important index for rodent damage m onitoring and grade evaluation in our country.Now the manual survey method has many problem s,such as low precision,time-consuming and labor-consuming,high investigation cost,only s uitable for small area investigation,and so on.It is difficult to meet the requirements of large area real-time monitoring and research.Dynamic and real-time monitoring of the number of rat holes is an imp ortant means to effectively formulate anti-rodent measures and prevent the occurrence of plague .In this study,the data of desertified grassland was collected by high spectrometer carried by unmanned aerial vehicle (UAV),and the rat hole index (RHI) was proposed to identify the rat hole in the grassland.The results show that the ov erall accuracy of identifying prairie rat holes by RHI index can reach 97% and the Kappa coefficie nt can reach 0.93. Compared with normalized difference vegetation index (NDVI),soil-adjusted vegetation index (SAVI) and ratio vegetation index (RVI) vegetation index models,this model has higher recognition accuracy.The proposal of RHI can effectively improve the accuracy and eff iciency of rat hole identification in grassland,and provide an effective method for rodent control and grassland degradation monitoring and research.

    参考文献
    相似文献
    引证文献
引用本文

张涛,杜健民,张海军,皮伟强,高新超,朱相兵.基于无人机高光谱荒漠草原鼠洞识别方法研究[J].光电子激光,2022,33(2):120~126

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-24
  • 出版日期:
文章二维码