BP神经网络结合变量选择方法在牛奶蛋白质含量检测中的应用
DOI:
CSTR:
作者:
作者单位:

(1.内蒙古农业大学 计算机与信息工程学院, 内蒙古 呼和浩特 010018; 2.内蒙古自治区农牧业大 数据研究与应用重点实验室, 内蒙古 呼和浩特 010030)

作者简介:

刘江平(1980-),男,博士,副教授, 硕士研究生导师,主要从事图像处理的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61962048)和内蒙古科技厅关键技术攻关项目(2020GG0169)资助项目 (1.内蒙古农业大学计算机与信息工程学院, 内蒙古呼和浩特 010018; 2.内蒙古自治区农牧业大 数据研究与应用重点实验室, 内蒙古呼和浩特 010030)


Application of BP neural network and variable selection method in protein content detection of milk
Author:
Affiliation:

(1.College of Computer and Information Engineering of the Inner Mongolia Agricul tural University,Huhhot,Inner Mongolia 010018, China; 2.Inner Mongolia Autonomous Region Key Laborato ry of Big Data Research and Application of Agriculture and Animal Husbandry,Huhh ot,Inner Mongolia 010030, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    牛奶中的蛋白质含量会影响牛奶的品质,利用高光谱图像的光谱特征信息研究对牛 奶蛋白质含 量预测的可行性。本文提出一种基于 竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS) 和连续投影算法(successive projections algorithm,SPA) 结合多层前馈神 经网络(back propagation,BP)的预测建模方法,实验以含有不同浓度蛋白质的牛奶为对 象,利用可见光 /近红外高光谱成像系统共采集到5种牛奶共计250组高光谱数据,通过 实验对比选择采用标准化方法对获 取到的吸收光谱预处理,然后采用CARS结合SPA筛选特征波长 ,得到18个特 征波长,建立CARS-SPA-BP模型,经过试验,CARS-SPA-BP模型的训练集决定系数和测试 集决定系数R2c和R2p分别达到0.971和0.968,训练集 均方根误差(root mean square error of calibration, RMSEC) 和测试集均方根误差(root mean square error of prediction, RMSEP)达到了0.033和0.034。 研究发现,采用CARS结合SPA筛选的牛奶特征波长建立的多层 前馈神经网络 模型,其模型预测结果与全波长建模相比并没有明显降低,因此将CARS结合SPA用于波长筛选并且结合BP神经网络基本可以完成对牛奶蛋白质含量的预测。为验证CARS -SPA-BP模型 的预测能力,在相同数据环境下,使用较为传统的偏最小二乘回归 (partial least squares regression,PLSR)进行建模,实验 结果表明, CARS-SPA-BP相较于PLSR,R2p和RMSEP均有明显提升。研究表明,CARS-SPA-BP可充分利 用牛奶光谱特征信息实现较高精度的牛奶蛋白质含量检测。

    Abstract:

    The protein content of milk will affect the quality of milk.The feasi bility of predicting the protein content of milk is studied by using the spectral feature information of hyperspectral image.In this paper,a prediction modeling method (CARS-SPA-BP) based on compet itive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA) combined with multilaye r feedforward neural network (back propagation,BP) is proposed.In the experiment,250groups of hyperspectral data of five kinds of milk were collected by the visible/near infrared hyperspectral imaging syst em.Through the experimental comparison,the standardized method was used to preprocess the obta ined absorption spectrum,and then the CARS combined with SPA was used to select the characteristic wavelength,18chara cteristic wavelengths are obtained.Through experi ments,the determination coefficients R2c and R2p of training set and test set of CARS-SPA-BP model r each 0.971and 0.968respectively,and the root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) reach 0.033and 0.034,respectively.It is found that the prediction results of multila yer back propagation (BP) neural network model based on CARS and SPA are not significantly lower than that of full wavelength m odel,Therefore, the CARS combined with SPA for wavelength screening and BP neural network can basically complete the prediction of milk protein content.In order to verify the prediction ability of CARS-SPA-BP model,the t raditional partial least squares regression (PLSR) is used to model under the same data environment .The experimental results show that CARS-SPA-BP has significantly improved R2p and RMSEP compare d with PLSR.The results show that CARS-SPA-BP can make full use of the spectral characteristic s of milk to achieve high-precision detection of milk protein content.

    参考文献
    相似文献
    引证文献
引用本文

胡鹏伟,刘江平,薛河儒,刘美辰,刘一磊,黄清. BP神经网络结合变量选择方法在牛奶蛋白质含量检测中的应用[J].光电子激光,2022,33(1):23~29

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-19
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-02-25
  • 出版日期:
文章二维码