融合重检测机制的上下文感知目标跟踪算法
DOI:
CSTR:
作者:
作者单位:

(西北师范大学 物理与电子工程学院,甘肃 兰州 730070)

作者简介:

火元莲(1973-),女,博士,副教授,硕士研究生导师,主 要从事数字图像处理、信号与信息处理等方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61561044)和甘肃省自然科学基金(20JR10RA077)资助项目 (西北师范大学 物理与电子工程学院,甘肃 兰州 730070)


Context-aware target tracking algorithm fused with redetection mechanism
Author:
Affiliation:

(College of Physics and Electronic Engineering,Northwest Normal University,Lanz hou,Gansu 730070,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决目标跟踪中常见的遮挡、旋转和背景杂 乱等问题,提出了一种融合重检测 机制的上下文感知目标跟踪算法。首先在相关滤波算法的基础上引入上下文信息供滤波器学 习以丰富样本信息,构造上下文感知相关滤波器,提高滤波器的学习能力;然后引入重检测 机制判断检测结果的可靠性,解决遮挡情况下模型被污染的问题。最后在公开数据集上对算 法的性能进行了测试,并与DSST、Staple、SRDCF、TLD和BACF这5种算法进行对比。实验结 果表明,算法在遮挡、旋转和背景杂乱等复杂场景下具有较好的跟踪鲁棒性,跟踪精度和成 功率分别达到了0.748和0.836,均优于其余5种跟踪算法。

    Abstract:

    In order to solve the common problems of occlusion,rotation and backg round clutter in target tracking,a context-aware target tracking algorithm wit h re-detection mechanism is proposed in this paper.To solve the problem,first o f all,the context information is introduced on the basis of the correlation fit ering algorithm,with the purpose of making the filter to enrich the sample info rmation.Furthermore,the context-aware correlation filter is constructed to im p rove the learning ability of the filter.And then,a re-detection mechanism is i ntroduced to judge the reliability of the detection result,so that the problem of model contamination in the case of occlusion can be solved.Finally,,the per formance of the proposed algorithm is tested on the public datasets and compared with the five algorithms,including DSST (Accurate Scale Estimation for Robust V isual Tracking),Staple (Complementary Learners for Real-Time Tracking),SRDCF (L e arning Spatially Regularized Correlation Filter for Visual Tracking),TLD (Track ing-Learning-Detection) and BACF (Learning Background-Aware Correlation Filte r fo r Visual Tracking).The experimental results show that the algorithm in this pap er has better tracking robustness in complex scenes such as occlusion,rotation and background clutter.The tracking accuracy and success rate of the algorithm have reached 0.748and 0.836respectively,which are better than the other five tracking algorithms.

    参考文献
    相似文献
    引证文献
引用本文

火元莲,李明,郑海亮,李俞利.融合重检测机制的上下文感知目标跟踪算法[J].光电子激光,2021,32(9):992~999

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-02-22
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-11-12
  • 出版日期:
文章二维码