基于空间-通道注意力的改进SSD目标检测算法
DOI:
CSTR:
作者:
作者单位:

(安徽理工大学 计算机科学与工程学院,安徽 淮南 232000)

作者简介:

许光宇(1976-),男,博士,主要从事数字图像处理方 面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61471004)和安徽理工大学博士专项基金(ZX942)资助项目 (安徽理工大学 计算机科学与工程学院,安徽 淮南 232000)


Improved SSD object detection algorithm based on space-channel attention
Author:
Affiliation:

(School of Computer Science and Engineering,Anhui University of Science and Tec hnology,Huainan,Anhui 232000,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目标检测的任务是精确识别,有效定位出图像中 目标物体,且预定义其类别。针对主 流目标检测(single shot multibox detector,SSD)算法存在小目标检测准确度不高,检测 效率较低等问题,提出一种基于空间-通道注意力机制的SSD目标检测算法(spatial and channel single shot multibox detector,SC_SSD)。通过在SSD深层网络引入空间-通道注意 力机制增强高层特征图语义信息,提高算法获取目标物体的细节与位置信息的能力,从而降 低漏检率及误检率,并提高小目标物体检测的准确度。此外,利用MobileNetV2中的深度可 分离卷积对SSD主干网络(visual geometry group network,VGG-16)进行剪枝处理,降低参 数量,从而减少训练与检测的时间。在PASCAL VOC2007数据集上进行实验,本文算法检测 的精确度与速度分别为78.9%与59.4 Fps,比S SD算法提升了3.2%与26.7 Fps,满足实时性 需求。算法也优于相比较的其他算法,是一种有效可行的目标检测算法。

    Abstract:

    The task of object detection is to identify accurately,effectively loc ate the target object in the image,and predefine its category.Aiming at the problems that the SSD (singal shot multibox detector) object detection algorithm is not enough in detection accurac y and efficiency in small object detection,an improved SSD algorithm based on space-channel att ention SC_SSD (spatial and channel singal shot multibox detector) is proposed.By introducing the space-channel attention mechanism into SSD deep network,the semantic informati on of high-level feature can be enhanced,and the algorithm is capable of capturing t he information of details and position of the target object.As a result,the rates of missed dete ction and false detection are reduced and the detection accuracy for small object is improved.I n addition,the deep separable convolution in MobileNetV2is used to prune the SSD backbone netw ork VGG-16(visual geometry group network).This will reduce the number of parameter s and will improve efficiency of training and detection.Experiments on Pascal VOC2007data set show that the detection precision and the detection rate of the proposed algorithm is 78.9% and 59.4Fps, respectively,3.2% and 26.7Fps higher than SSD algorithm,meeting the real-tim e requirements. The proposed algorithm is also superior to that of the previous ones and is an e ffective and feasible object detection algorithm.

    参考文献
    相似文献
    引证文献
引用本文

许光宇,尹孟园.基于空间-通道注意力的改进SSD目标检测算法[J].光电子激光,2021,32(9):970~978

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-02-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-11-12
  • 出版日期:
文章二维码