基于在线估计的视觉SLAM低光照图像增强算法
DOI:
CSTR:
作者:
作者单位:

(昆明理工大学 信息工程与自动化学院,云南 昆明 650500)

作者简介:

张智斌(1965-),男,本科,副教授,硕士生导师,主要从 事机器人、视觉SLAM和网络安全方面的研究.

通讯作者:

中图分类号:

基金项目:


Low-light image enhancement algorithm for visual SLAM based on online estimatio n
Author:
Affiliation:

(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming,Yunnan 650500,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提升基于特征点的双目视觉定位算法在低光 照环境下定位的准确性,提出一 种基于在线估计的视觉同步定位与地图构建(simultaneous localization and mapping,S LAM) 低光照图像增强算法。通过在线估计图像亮度值,实时更新图像增强算法的参数,解决了基 于固定参数的图像增强算法在图像较亮、较暗等情况下的不适用性问题。首先,通过 ORB-SLAM2系统寻找定位准确度的影响因素,并通过在线估计参数的方法实时更新相关参 数。其次,利用低光照图像增强算法(low-light image enhancement,LIME)改善图像 效果。 最后,根据增强后的图像进行特征点提取,提升了特征匹配准确度,进而提升了定位的准确 度。在公开EuRoC数据集上,通过与目前广泛使用的ORB-SLAM2算法进行对比实验,结 果表明本文提出的视觉SLAM系统,具有更好的定位准确性及鲁棒性。

    Abstract:

    In order to improve the accuracy of feature based stereo visual localiz ation algorithm under low-light environments,we propose a novel low-light ima ge enhancement algorithm based on online estimation for visual simultaneous locali zation and mapping (simultaneous localization and mapping,SLAM).By online esti mating the image brightness value,the corresponding parameters of the image enh ancement algorithm are updated in real time.Therefore,it solves the problem of inapplicability of standard parameter-fixed image enhancement algorithm,which performs poorly in the case of very bright or dark environments.First,these fa ctors which affect the localization accuracy are explored in the ORB-SLAM2syst e m,and their corresponding parameters are updated in real time by online paramet er estimation method.Then,the low-light image enhancement (LIME) algorithm is applied to improve the image quality of low-light e nvironments.Finally,the image feature extraction is performed on the enhanced image effectively,which improves feature matching accuracy,and it is also bene ficial for improving the localization accuracy.The proposed method is extensive ly validated on the public EuRoC datasets and compared with the currently widely used ORB-SLAM2algorithm.The experimental results effectively verify that the proposed visual SLAM system achieves better localization accuracy and robustness than the others.

    参考文献
    相似文献
    引证文献
引用本文

李红莉,张智斌,徐玄冀.基于在线估计的视觉SLAM低光照图像增强算法[J].光电子激光,2021,32(9):945~952

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-01-27
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-11-12
  • 出版日期:
文章二维码