基于多模型融合方法的肺结节良恶性分类
DOI:
CSTR:
作者:
作者单位:

(1.昆明理工大学 信息工程与自动化学院,云南 昆明 650500; 2.云南国土资源职业学院信息中心,云南 昆明 650091; 3.云南大学 信息学院,云南 昆明 652501; 4.昆明理工大学 云南省计算机技术应用重点实验室,云南 昆明650500)

作者简介:

黄青松(1962-),男,硕士,教授,硕士生导师,主要从事 深度学习、医学图像处理方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(81860318,81560296)资助项目 (1.昆明理工大学 信息工程与自动化学院,云南 昆明 650500; 2.云南国土资源职业学院信息中心,云南 昆明 650091; 3.云南大学 信息学院,云南 昆明 652501; 4.昆明理工大学 云南省计算机技术应用重点实验室,云南 昆明650500)


Multi-model fusion classification method for benign and malignant lung nodules with embedded attention mechanism
Author:
Affiliation:

(1.Faculty of Information Engineering and Automation,Kunming University of Scien ce and Technology,Kunming 650500,China; 2.Information Center of Yunnan Vocationa l College of Land and Resources,Kunming 650500,China; 3.College of Information,Y unnan University,Kunming 652501,China; 4.Key Laboratory of Computer Technology Application of Yunnan Province,Kunming University of Science and Technology,Kunm ing 650500,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对CT图像中肺结节因边缘模糊、特征不明显造成的分类效果有偏差的问题,本文提出一种嵌入注意力机制的多模型融合方法(简称MSMA-Net)。该方法先将原始CT图像进行肺实质分割和裁剪操作后得到两种不同尺寸的图像,然后分别输入到空间注意力模型和通道注意力模型进行训练,其中,空间注意力模型着重于提取肺结节在CT图像中的空间位置信息,通道注意力模型着重于提取肺结节的细节特征。最后将两个模型提取的特征进行融合,用于得出良恶性分类结果。经过大量实验表明,这种多模型融合方法能很好地提取到肺结节在CT图像中的位置信息和自身的边缘特征,在LIDC数据集的基础上,该方法在准确率,敏感性,特异性分别达到了96.28%,96.72%,96.17%,相较于传统的网络模型取得了更好的分类效果。

    Abstract:

    Aiming at the problem that the classification effect of lung nodules in CT images is biased due to blurred edges and unobvious features,this paper proposes a mul ti-model fusion method (MSMA-Net) embedded in the attention mechanism.This method first performs lung parenchymal segmentation and cropping operations on the original C T image to obtain two images of different sizes,and then input them to the spatial atte ntion model and the channel attention model for training.The spatial attention model focuses on extracting lung nodules.The spatial position information of the nodules in CT images,the channel attention model focuses on extracting the detailed features of lung nodules.Fin ally,the features extracted by the two models are fused to obtain the benign and malignan t classification results.A large number of experiments have shown that this multi -model fusion method can well extract the position information of lung nodules in CT images an d their own edge features.Based on the LIDC data set,this method is accurate and sensitive .The specificity reached 96.28%,96.72%,and 96.17%,respectively,which achieved bet ter classification results than traditional network models.

    参考文献
    相似文献
    引证文献
引用本文

郭峰,黄冕,刘利军,黄青松.基于多模型融合方法的肺结节良恶性分类[J].光电子激光,2021,32(4):389~394

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-16
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-04-22
  • 出版日期:
文章二维码