MS-UNet++:基于改进UNet++的视网膜血管分割
DOI:
CSTR:
作者:
作者单位:

(1.昆明理工大学 信息工程与自动化学院 云南 昆明 650500; 2.云南国土资源职业学院信息中心 云南 昆明 652501)

作者简介:

黄青松(1962-),男,硕士,教授,硕士生导师,主要从事智能信息系统方面的研究.

通讯作者:

中图分类号:

基金项目:

面向大规模数据集的医学图像-文本跨模态检索关键技术研究(81860318)和面向移动医疗的 医学影像精准响应方法研究(81560296)资助项目 (1.昆明理工大学 信息工程与自动化学院 云南 昆明 650500; 2.云南国土资源职业学院信息中心 云南 昆明 652501)


MS-UNet++:Retinal vessel segmentation method based on improved UNet++
Author:
Affiliation:

(1.Faculty of Information Engineering and Automation,Kunming University of Sci ence and Technology,Kunming 650500,China; 2.Information Center,Yunnan Vocational College of Land and Resources,Kunming 652501,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文针对视网膜图像中细微血管特征提取困难导致其分割难度高等问题,提出了一种 基于端到端的神经网络嵌套视网膜血管分割模型算法(简称MS-UNet++),该算法选取了深度监督网络UNet++作为分割网络模型,提升特征的使用效率;引入MulitRes模块,改善低对比度环境下细小血管的特征学习效果,并在特征提取后加上SENet模块进行挤压和激励操作,从而增强特征提取阶段的感受野,提高目标相关特征通道的权重。基于DRIVE图像数据集的实验结果表明,该算法分割结果与真实结果之间的重叠率DICE值为83.64%,并交比IOU为94.83%,准确度ACC为96.79%,灵敏度SE为81.78%,较现有模型有一定的提升,可用于视网膜图像血管分割,为临床诊断提供辅助信息。

    Abstract:

    In this paper,an end-to-end neural network-based nested retinal vesse l segmentation model algorithm (MS-UNet++) is proposed to solve the problem of h igh segmentation difficulty caused by the difficulty of extracting subtle vessel features in retinal images.The algorithm selects the deep supervision network UNet++ as the segmentation network model to improve the use efficiency of featur e.In our algorithm design,We choose to introduce MulitRes module for feature e xtraction to improve the feature learning effect of the small blood vessels in l ow contrast environment.And after feature extraction,we select to insert SENet module is added for squeezing and exciting operations,so as to enhance the rec eptive field in feature extraction stage and increasing the weight of target-re l ated feature channels.The experimental results based on DRIVE image data set sh ow that the overlap ratio DICE value between with the segmentation result and th e ground truth is 83.64%,the parallel ratio IOU is 94.83%,and the accuracy is 96.79%,and the sensitivity is 81.78%,compared with the existing algorithm mode ls,the results of our algorithm models has a certain improvement.As a result, our algorithm models can be used for retinal image vessel segmentation and provi de auxiliary information for clinical diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

殷宁波,黄冕,刘利军,黄青松. MS-UNet++:基于改进UNet++的视网膜血管分割[J].光电子激光,2021,32(1):35~41

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-09-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-01-26
  • 出版日期:
文章二维码