基于Bayesian粗糙集和布谷鸟算法的肺部肿瘤高维特征选择算法
DOI:
CSTR:
作者:
作者单位:

(1.北方民族大学 计算机科学与工程学院,宁夏 银川 750021; 2.宁夏智能信息与大数据处理重点实验室,宁夏 银川 750021; 3.宁夏医科大学 理学院,宁夏 银川 750004; 4.中国电信股份有限公司宁夏分公司,宁夏 银 川 750002)

作者简介:

周涛(1977-),男,宁夏吴忠市人,博士,教授,硕士生导 师,主要研究方向为计算辅助诊断、医学图像分析与处理和模式识别等.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62062003)、宁夏自治区重点研发计划项目(引才专项)(2020BEB04022)和北方民族大学引进人才科研启动项目(2020KYQD08)资助项目 (1.北方民族大学 计算机科学与工程学院,宁夏 银川 750021; 2.宁夏智能信息与大数据处理重点实验室,宁夏 银川 750021; 3.宁夏医科大学 理学院,宁夏 银川 750004; 4.中国电信股份有限公司宁夏分公司,宁夏 银川 750002)


High-dimensional feature selection algorithm for lung cancer based on Bayesian rough set and cuckoo search
Author:
Affiliation:

(1.School of Computer Science and Engineering,North Minzu University,Yinchuan,ningxia 750021,China; 2.Ningxia Province Key Laboratory of Intelligent Information and Big Data Processing,Yinchuan 750021,China; 3.School of Science,Ningxia Medical University,Yinchuan 750004,China; 4.China Te lecom Corporation Limited Ningxia Branch,Yinchuan 750002,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在高维特征选择过程中最优特征子集生成和分类器 参数优化方面,提出一种基于贝叶斯粗糙集(BRS)、遗传算法(GA)和布谷鸟算法(CS) 的两阶段优化高维特征选择算法。该算法首先分析3000例肺部肿瘤CT图像的形状、灰度和纹理特征,提取104维特 征分量共同量化ROI;然后进行两阶段优化:(1) 从全局相对增益函数的角度分析了属性 重要度,结合属性约简长度和基因编码权值函数的加权和构造适应度函数,通过选择、交叉 和变异等遗传操作生成最优特征子集,在不降低分类精确度的前提下降低特征维度;(2) 利用CS对支持向量机(SVM)参数进行全局寻优;最后通过实验验证本文算法的可行性和有 效性。实验结果表明,该算法有效提升了肺部肿瘤良恶性识别能力,降低了算法的时间复杂 度。

    Abstract:

    In the high-dimensional feature selec tion process,the best feature subset generation and classifier parameter optimiz ation were concerned.A two stage optimization algorithm for high-dimensional fe ature selection based on bayesian rough set (BRS),genetic algorithm (GA) and cuc koo search (CS) was proposed.Firstly,analyzed the shape,gray and texture feature s of 3000lung tumor CT images,and extracted 104dimensional feature components to jointly quantify ROI.Then the two phase optimization was c arried out.(1)the attribute importance was analyzed from the global relative gai n function,and the fitness function was constructed by combining the weight of t he attribute reduction length ,gene encoding weight function and the attribute i mportance.The best feature subset was generated through genetic operation of sel ection,crossover and mutation,and the feature dimension was reduced without redu cing the accuracy of classification.(2) CS was used to optimize the parameters o f support vector machine (SVM).Finally,the feasibility and effectiveness of the algorithm were verified by experiments.Experimental results show that the algori thm effectively improves the ability of identifying benign and malignant lung tu mors and reduces the time complexity of the algorithm.

    参考文献
    相似文献
    引证文献
引用本文

周涛,陆惠玲,张飞飞.基于Bayesian粗糙集和布谷鸟算法的肺部肿瘤高维特征选择算法[J].光电子激光,2020,31(12):1288~1298

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-08-30
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-01-26
  • 出版日期:
文章二维码