基于改进UNet网络的船舶水尺读数识别方法研究
DOI:
CSTR:
作者:
作者单位:

(浙江理工大学 自动化研究所,杭州 310018)

作者简介:

李俊峰(1978-),男,河南南阳人,博士,副教授,主要从 事 机器视觉和产品视觉检测等方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目 (浙江理工大学 自动化研究所,杭州 310018)


Research on recognition method of ship water gauge reading based on improved UNe t network
Author:
Affiliation:

(Institute of Automation,Zhejiang Sci-Tech University,Hangzhou 310018,China )

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对船舶水尺识别过程中出现的图像亮度不均、高 光、水尺标志倾斜和轻微模糊粘连以及船体表面划痕和水尺标志损坏等,本文提出一种基于 改进UNet网络的船舶水尺识别方法。首先,利用改进的UNet网络对图像进行吃水线检测,从 图像中分离船舶区域和水面区域;其次,在分离后的船舶区域图像内,通过在多通道色彩空 间图像上提取各图像的最大稳定极值区域MSER,将各图像最大稳定极值区域并集操作的结果 作为水尺标志候选区域,再把水尺标志候选区域分为非吃水线处候选连通区域和吃水线处候 选连通区域;然后,基于水尺标志连通区域的blob特征对非吃水线处水尺标志连通区域初次 筛选,再利用卷积神经网络对筛选后的连通区域所在的ROI图像进行分类识别;最后,根据 吃水线处水尺标志连通区域的几何特征计算水尺实际读数。实验结果表明,该算法对质量较 好的图像有较高的识别准确率,准确率可以达到96.8%,对于采集、 船体等原因导致质量较差的图像也能有80.7%的准确率。

    Abstract:

    We have proposed a method for identify ing water gauges on ships,aiming at the uneven brightness of images,highlights,t ilting,blurring and sticking of water gauge marks,as well as the scratches on th e hull surface and damage to water gauge marks during the recognition process.Fi rstly,we have used the improved UNet network to detect the waterline of the imag e and separate the part of ship and the part of water from the image.Secondly,we have extracted the candidate connected regions of water gauge mark through MSER in the multi-channel color space of the separated ship part image,and divided the candidate regions of water gauge mark into non-waterline candidate regions and waterline candidate regions.Thirdly,we have filtered the non-waterline cand idate regions through their BLOB and classified them with CNN.Finally,Finally,co mbined with the water gauge mark at the non-waterline that has been identified, the actual reading of the water gauge mark is calculated through the filtering a nd geometric characteristics of the connected area at the waterline.Experimental results show that the algorithm has a higher recognition accuracy rate for imag es with better quality,and the accuracy rate can reach 96.8%,and it can also hav e an accuracy rate of 80.7% for images with poor quality due to collection,ship hull and other reasons.

    参考文献
    相似文献
    引证文献
引用本文

张钢强,李俊峰.基于改进UNet网络的船舶水尺读数识别方法研究[J].光电子激光,2020,31(11):1182~1196

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-06-23
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-01-26
  • 出版日期:
文章二维码