联合损失优化三元组模型的行人重识别
DOI:
CSTR:
作者:
作者单位:

(安徽工程大学 电气工程学院,安徽 芜湖 241000)

作者简介:

潘玥(1996-) ,女,安徽安庆人,硕士研究生 ,主要学习图像处理与模式识别.

通讯作者:

中图分类号:

基金项目:

安徽省高校自然科学研究重点项目(KJ2018A0122)资助项目 (安徽工程大学 电气工程学院,安徽 芜湖 241000)


Person re-identification based on joint loss optimization triple model
Author:
Affiliation:

(School of Electrical Engineering,Anhui Polytechnic University,Wuhu,Anhui 241000,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    行人重识别(Person re-identification,PReI D)通常会受到背景杂物或外界遮挡等影响,因此,很难快速而又准确度区分不相 交相机视图之间的不同行人。本文提出一种可扩展的深度特征学习体系结构的混合方案,将 行人重识别视为学习距离度量问题,应 用对称正则化来帮助相对距离训练深度神经网络。首先,结合最新发展的卷积神经网络(Con volutional Neural Networks,CNN),采 用其主要框架三元组模型(Triple model)提取鲁棒表示,旨在解决单一图像提取描述符的 不足。其次,将三元组损失和中心损失相联 合,结合梯度下降算法更新并优化网络权重及参数,克服样本不平衡性。此外,引入对称正 则项修正优化由相对距离度量推导出来 的非对称梯度反向传播,实现在三元组单元中最小化类内距离同时最大化类间距离,从而克 服行人重识别中的“角度偏差”问题。 结果证明,在相同的环境中,在空间不相交的相机上进行行人重识别的匹配效果得到明显提 高。

    Abstract:

    Person re-identification is usually affected by background debris or external occlusion.Therefore,it is difficult to quickly and accurately distinguish different pedestrians between disjoint camera views.This paper presents a hybrid scheme of scalable deep feature learning architecture,which regards pedestrian re-recognition as a learning di stance measurement problem,and applies symmetric regularization to help train deep neural networks with relative distances.First ,combined with the latest development of Convolutional Neural Networks (CNN),its main framework triple model is used to extract a robu st representation,which aims to solve the problem of single image extraction descriptors.Secondly,the triple loss and the center los s are combined,and the gradient weighting algorithm is used to update and optimize the network weights and parameters to overcome sample imbala nce.In addition,the introduction of a symmetric regular term modification optimizes the back-propagation of the asymmetric gradient der ived from the relative distance metric,which minimizes the intra-class distance and maximizes theinter-class distance in the triple unit, Inorder to overcome the "angle deviation" problem in pedestrian re-identificati on.The results prove that in the same environment,the matching effect of pedestr ian re-recognition on cameras that do not intersect in space issignificantly im proved.

    参考文献
    相似文献
    引证文献
引用本文

潘玥,杨会成,徐姝琪,何野.联合损失优化三元组模型的行人重识别[J].光电子激光,2020,31(9):947~954

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-05-23
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-11-10
  • 出版日期:
文章二维码