基于图像块细粒度的自适应单像素成像算法
DOI:
CSTR:
作者:
作者单位:

(西南交通大学 信号与信息处理四川省重点实验室,四川 成都 610031)

作者简介:

和红杰(1971-),女,河南平顶山人,教授,博士生导师,主要 研究方向为数字处理、信息安全、深度学习与大数据安全.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61872303,7)和四川省科技厅科技创新人才计划(2018RZ0143)资助项目 (西南交通大学 信号与信息处理四川省重点实验室,四川 成都 610031)


Adaptive single-pixel imaging based on fine classification of image b locks
Author:
Affiliation:

(Sichuan Prounical Key Laboratory of Signal and Information Processing,Southwest Jiaotong University,Chengdu 610031,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    设计了一种基于图 像块细粒度的自适应单像素成像算法。首先获取目标的低分辨图像,将其分为四等块,根据 每块中 重要小波系数的个数与分布,将其分为非重要、重要和半重要三类。非重要块不采样;重要 块全采样;半 重要块进行迭代分块、分类,部分采样。利用小波反变换重建高分辨图并重复上述步骤,直 到重建图像达 到目标分辨率。实验结果表明,对于背景平滑的医学生物图像,本文方法能够在相同采样率 下至少提高重建图像PSNR约2dB。

    Abstract:

    Images were divided into four equal-sized blocks by adaptive compress ive imaging.The four blocks were classified into two types after getting the number of important discrete wa velet transform (DWT) coefficients,which are the important blocks and the unimportant blocks.The important blocks were all sampl ed with higher resolution, leading to high sampling rate.To solve these problems,an imaging method is de signed based on fine precision classification of image blocks.Coarse image is reconstruted and divided into f our equal-size blocks first .Then the four image blocks are classified into three types according to the number a nd distribution of their important DWT coefficients,which are the unimportant bl ocks,the important blocks and the partly important blocks.The unimportant blocks are ignored.The important blocks are all sampl ed with higher resolution.The partly important blocks are divided repeatedly,and only the important parts are sampled.Image with higher resolution is reconstructed through inverse wavelet transform.Steps above are repeated until the reconstructed image gets required resolution.Experimental re sults show that compared with other three algorithms, the peak signal-to-noise ratio (PSNR) of reconstructed images is improved by at least 2dB with similar sampling rate for biology imag es.

    参考文献
    相似文献
    引证文献
引用本文

周兰,霍耀冉,陈帆,和红杰.基于图像块细粒度的自适应单像素成像算法[J].光电子激光,2019,30(1):85~94

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-01-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-03-26
  • 出版日期:
文章二维码