基于神经网络的宽带激光熔覆熔池特征参数预测
DOI:
CSTR:
作者:
作者单位:

(1.武汉理工大学 现代汽车零部件技术湖北省重点实验室,武汉 430070; 2.武汉理工大 学 汽车零部件技 术湖北省协同创新中心,武汉 430070;3.武汉理工大学 汽车工程学院,武汉 430070)

作者简介:

秦训鹏(1962-),男,湖北江安人,教授,博士生导师,主 要从事智能制造方面的研究.

通讯作者:

中图分类号:

基金项目:

湖北省技术创新专项重大项目(cxzd2017000281)和武汉理工大学研究生优秀 学位论文培育项目资助(2017-YS-045)资助项目 (1.武汉理工大学 现代汽车零部件技术湖北省重点实验室,武汉 430070; 2.武汉理工大学 汽车零部件技 术湖北省协同创新中心,武汉 430070;3.武汉理工大学 汽车工程学院,武汉 430070)


Prediction on characteristics of molten pool in wide-band laser cladding based on neural network
Author:
Affiliation:

(1.Hubei Key Laboratory of Advanced Technology of Automobile Components,Wuhan University of Technology,Wuhan 430070,China; 2.Hubei Collaborative Innovation Center for Automotive Components Technology,Wuhan University of Technology,Wuhan 430070,China; 3.S chool of Automotive Engineering,Wuhan University of Technology,Wuhan 430070,Chin a)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了实现宽带激光熔覆熔池特征的准确预测,从 而对激光熔覆工艺过程进行实时监测、评价及反馈 控制。通过宽带激光熔覆全因素工艺试验采集熔池特征参数样本数据,采用遗传算法优化BP 神经网络的 初始权值和初始阈值,建立激光熔覆工艺参数(激光功率、粉末厚度、扫描速度)与熔池特 征参数之间的 BP神经网络预测模型。利用训练集数据对所建立的神经网络进行训练,形成输入与输出之间 的映射关系, 并利用测试集数据对网络进行测试。试验结果表明,宽带激光熔覆熔池特征参数神经网络预 测模型具有很 高的精度。该神经网络预测模型对激光熔覆过程监测及熔覆层质量控制具有重要意义。

    Abstract:

    In order to realize the accurate prediction on characteristics of molt en pool in wide-band laser cladding, and achieve the real-time detection,evaluation and closed-loop control of las er cladding,a full factorial design method is used to conduct the experiments,and the experimental results are chos en randomly as sample data for neural network.Genetic algorithm is utilized to optimize the initial weights an d thresholds of back propagation (BP) neural network.The BP neural network prediction model is develo ped to express the relationship between the process parameters (laser power,powder thickness,scanning speed) a nd the characteristics of molten pool.The training set of data obtained in experiments is used to train the neu ral network to establish the perfect mapping relation between input and output of network.The testing set of data is used to verify the performance of the trained network.Simulation results indicate that the predict ion model of characteristic parameters of molten pool in wide-band laser cladding has sufficient accuracy. The neural network prediction model is of great significance for the real-time monitoring of laser cladding p rocess and the quality control of cladding layers.

    参考文献
    相似文献
    引证文献
引用本文

雷凯云,秦训鹏,刘华明,冉渊.基于神经网络的宽带激光熔覆熔池特征参数预测[J].光电子激光,2018,29(11):1221~1227

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-03-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-11-14
  • 出版日期:
文章二维码