基于l0正则化的增量低秩特征学习目标跟踪
DOI:
CSTR:
作者:
作者单位:

(闽江学院 物理学与电子信息工程系,福建 福州 350108)

作者简介:

邱立达(1984-),男,福建省福州人,硕士,讲 师,主要从事机器学习、模式识别与计算机视觉等方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(51277091)、中国博士后科学基金(2013T60637)和福建省中青年教师教育科研(JA15415)资助项目 (闽江学院 物理学与电子信息工程系,福建 福州 350108)


Target tracking based on the l0 regularized incremen tal low-rank features learning
Author:
Affiliation:

(Department of Physics and Electronic Information Engineering,Minjiang Universi ty,Fuzhou 350108,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高生成型目标跟踪算法在遮挡、背景干扰 等复杂条件下的性能,在稀疏编码模型中引入l0范数正 则化约束,以减少冗余编码信息并改善目标表观重构效果。同时提出一种新的基于非凸近端 加速梯度的快速迭代算法, 解决由此产生的非凸非光滑优化问题。设计了一种增量低秩学习策略,和传统方法需 要将目标观测数据作为 一个整体进行低秩学习不同,本文方法通过l0正则化稀疏编码能够有效地对目标低秩特 征子空间进行在线学习和更 新。在多个视频序列上的实验表明:基于l0正则化的增量低秩学习方法能有效提高目标 跟踪算法的准确率和鲁棒性; 和8种优秀的跟踪算法相比,本文算法在中心误差稳健性和重叠率稳健性两个指标上都取得 了最好结果。

    Abstract:

    In order to improve the performance of generative visual tracking unde r complex environment such as occlusion and background clutter,firstly, l0 regularized constraint is introduced to sparse coding model to reduce the redun dant encoding information and improve the effect of objective apparent reconstruction.As a no ntrivial byproduct,a novel fast iterative algorithm based on the non-convex accelerated proximal gradient is proposed to solve the resulting non-convex and non-smooth optimization problems.Secondly,a incremental low-rank features le arning strategy is designed.Unlike the traditional methods which need to do low-rank learning on the whole objective o bservation data matrix,the strategy proposed in this paper can effectively learn and update objective low-rank features subs pace online by l0 regularized sparse coding.Experimental results on multiple video sequences show that the method based on the l0 regularized incremental low-rank features learning can effectively improve the accuracy and robustness of target tracking algorithm.Compared with the 8state-of-the-art target tracking algorithms,the proposed algorithm achieves the best results both in location error robustness and overlap rate robustness.

    参考文献
    相似文献
    引证文献
引用本文

邱立达,傅平,王建兴.基于l0正则化的增量低秩特征学习目标跟踪[J].光电子激光,2017,28(3):304~310

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-04-19
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-03-20
  • 出版日期:
文章二维码